Physico-Chemical Properties and Mineral Identification of Salt Licks Soil in Segaliud Lokan Forest Reserve

Minerals and Chemistry of Salt Lick Soils

Authors

  • SITI NUR ANISA MOHAMAD MAIDIN Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • JEPHTE SOMPUD Faculty of Tropical Forestry, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • ISMAIL ABD RAHIM Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • MOHD. SANI SARJADI Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • BABA MUSTA Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.33736/bjrst.6355.2024

Abstract

This study intended to describe the physicochemical and mineralogical properties of salt licks discovered in Segaliud Lokan Forest Reserve. The salt licks in this forest reported to be visited and used by wildlifes via camera trap studies. In order to understand this wildlife’s behavior, the physicochemical and mineralogical properties of the salt lick especially the salt lick soil are important to determine the cause of the wildlife visitation. Five salt licks area as well as controlled soils were selected. Water and rock samples were also collected for the comparison study. The physical characteristic of licks soil shows pH ranges from slightly acidic to alkaline, high moisture content (23.30% – 59.35%), wide range of organic matter content (0.38% – 9.65%) and electrical conductivity range between 41.82 µS/cm to 243.32 µS/cm which is higher than the controlled soils. The soil texture from the salt licks soils is mostly classified as loam. The result of chemical analysis shows that the concentration of elements is higher in the lick soil compared to the controlled soil such as Ca (1101.92 mg/kg – 11551.64 mg/kg), K (767.32 mg/kg – 2432.11 mg/kg), Na (85.83 mg/kg – 754.20 mg/kg), Mg (986.05 mg/kg – 5843.29 mg/kg) and P (47.23 mg/kg – 290.215 mg/kg). Water samples from salt licks area are rich in Ca (637.67 mg/L – 3074.25 mg/L) and Na (572.35 mg/L – 2554.63 mg/L) compared to river nearby. The mineral analysis indicated the appearance of clay such as illite, chlorite and smectite. As a conclusion, the salt lick soil’s pH varies from slightly acidic to alkaline (5.38 – 8.98) compared to controlled soils (4.54), The salt lick surface soils also show higher percentage of moisture content (69.38%) and soil electrical conductivity (78.41%) difference compared to controlled soils. Meanwhile the organic matter percentage in salt lick soils is slightly lower (48.85%) than the controlled soils (51.11%). The salt lick soils also exhibit higher elements concentration than the controlled soils such as average concentration of Ca (96.14%), K (86.09%), Na (89.51%) Mg (91.38%) and P (86.78%).

References

Abrahams, P.W. (1999). The chemistry and mineralogy of three savanna lick soils. Journal of Chemical Ecology, 25: 2215-2228. DOI: 10.1023/A:1020861505138

Abu El-Ezz, A.R., Abdou, A.A. & Temraz, M.G.M. (2012). The petrography, mineralogy, and hydrocarbon potential of the shales of the duwi formation, Abu Tartur, South Western Desert, Egypt. Petroleum Science and Technology, 30(22): 2373-2382. DOI: 10.1080/10916466.2010.499404

Anderson, G. D. (1974). Potassium responses of various crops in East Africa. Potassium in tropical crops and soils.

Avramenko, M., Nakashima, K., Takano, C. & Kawasaki, S. (2023). Soil improvement using calcium phosphate compounds as a novel sustainable method: A review. GEOMATE Journal, 24(101): 68-75. DOI: 10.21660/2023.101.g12142

Ayotte, J.B., Parker, K.L., Arocena, J.M. & Gillingham, M.P. (2006). Chemical composition of lick soils: functions of soil ingestion by four ungulate species. Journal of Mammalogy. 87(5): 878-888. DOI: 10.1644/06-MAMM-A-055R1.1

Barre, P., Velde, B. & Abbadie L. (2007). Dynamic role of “illite-like” clay minerals in temperate soils: facts and hypotheses. Biogeochemistry, 82: 77-88. DOI: 10.1007/s10533-006-9054-2

Berger, A., Gier, S. & Krois, P. (2009) Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones: Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. AAPG bulletin, 93(5): 595-615. DOI: 10.1306/01300908096

Blake, J., Guerra, J., Mosquera, D., Torres, R., Loiselle, B. & Romo D. (2010). Use of mineral licks by white-bellied spider monkeys (Ateles belzebuth) and red howler monkeys (Alouatta seniculus) in eastern Ecuador. International Journal of Primatology, 31: 471–483. DOI: 10.1007/s10764-010-9407-5

Bohn, H.L., McNeal, B.L. & O’Connor, G.A. (2001). Soil chemistry. John Wiley and Sons. New York.

Bot, A. & Benites J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production (No. 80). Food & Agriculture Org.

Brightsmith, D.J. (2004). Effects of weather on parrot geophagy in Tambopata, Peru. The Wilson Bulletin, 116(2): 134-145. DOI: 10.1676/03-087B

Brunner, U. & Bachofen, R. (1998). The biogeochemical cycles of phosphorus: a review of local and global consequences of the atmospheric input. Toxicological & Environmental Chemistry, 67(1-2): 171-188. DOI: 10.1080/02772249809358612

Carrow, R.N. & Duncan, R.R. (2012). Saline and sodic turfgrass soils. CRC Press Taylor & Francis Group Boca Raton. 1-415.

Chakraborty, K. & Mistri, B. (2015). Importance of soil texture in sustenance of agriculture: a study in Burdwan-I CD Block, Burdwan, West Bengal. Eastern Geographer, 21(1): 475-482.

Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986). Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals. 34:407–423. DOI: 10.1346/CCMN.1986.0340408

Chen, G., Du, G., Zhang, G., Wang, Q., Lv. C. & Chen, J. (2011). Chlorite cement and its effect on the reservoir quality of sandstones from the Panyu low-uplift, Pearl River Mouth Basin. Petroleum Science. 8:143–150. DOI: 10.1007/s12182-011-0127-z

Clennell, B. (1991). The origin and tectonic significance of melanges in Eastern Sabah, Malaysia. Journal of Southeast Asian Earth Sciences, 6 (3-4): 407-429. DOI: 10.1016/0743-9547(91)90085-C

Deer, W.A., Howie, R.A. & Zussman, J. (2013). An introduction to Rock-Forming Minerals, 3rd edition. The Mineralogical Society, London. 498.

Diamond, J., Bishop, K.D., Gilardi, J.D. (1999). Geophagy in New Guinea birds. Ibis. 141(2): 181-193. DOI: 10.1111/j.1474-919X.1999.tb07540.x

Havlin, J.L. (2005). Fertility. In: Hillel D, Hatfield JL. (Eds.) Encyclopedia of Soils in the Environment. 3: 10–19. DOI: 10.1016/B0-12-348530-4/00228-9

Hillier, S. (1994). Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Minerals. 29(4): 665-679. DOI: 10.1180/claymin.1994.029.4.20

Huggett, J.M. (2005). Sedimentary rocks: Clays and their diagenesis. Encyclopedia of Geology. Elsevier. 62-70. DOI: 10.1016/B0-12-369396-9/00311-7

Hutchison, C.S. (2005). Geology of North-West Borneo Sarawak, Brunei and Sabah. Elsevier B.V. Netherlands.

Hutchison, C.S. & Tungah, S. (1991). Sabah serpentinite sandstone and conglomerate. Geological Society Malaysia Newsletter (Warta). 17: 59–64.

Jaiswal, L.K., Singh, P., Singh, R.K., Nayak, T., Tripathi, Y.N., Upadhyay, R.S. & Gupta, A. (2021). Effects of salt stress on nutrient cycle and uptake of crop plants. Physiology of salt stress in plants: Perception, signalling, omics and tolerance mechanism, 129-153. DOI: 10.1002/9781119700517.ch8

Jakovljeviã, M.D., Kostiã, N.M. & AntiãMladenoviã, S. B. (2003). The availability of base elements (Ca, Mg, Na, K) in some important soil types in Serbia. Proceedings for Natural Sciences, Matica Srpska Novi Sad, 104: 11-21. DOI: 10.2298/ZMSPN0304011J

Jensen, T.L. (2010). Soil pH and the Availability of Plant Nutrients. International Plant Nutrition Institute (IPNI).

Kelesoglu, S., Volden, S., Kes, M. & Sjoblom, J. (2012). Adsorption of naphthenic acids onto mineral surfaces studied by quartz crystal microbalance with dissipation monitoring (QCM-D). Energy & Fuels, 26(8): 5060-5068. DOI: 10.1021/ef300612z

Klaus, G., Klaus-Hügi, C. & Schmid, B. (1998). Geophagy by large mammals at natural licks in the rain forest of the Dzanga National Park, Central African Republic. Journal of Tropical Ecology, 14(6): 829-839. DOI: 10.1017/S0266467498000595

Keller, W.D. (1985). The nascence of clay minerals. Clays and Clay Minerals, 33(3): 161-172.

Kreulen, D.A. (1985). Lick use by large herbivores: a review of benefits and banes of soil consumption. Mammal Review, 15(3): 107-123. DOI: 10.1111/j.1365-2907.1985.tb00391.x

Kumar, S., Gupta, R.C. & Shrivastavan, S. (2016). Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates. Construction and Building Materials, 125: 884-891. DOI: 10.1016/j.conbuildmat.2016.08.106

Kumari, N. & Mohan, C. (2021). Basics of clay minerals and their characteristic properties. Clays and Clay Minerals, 24: 1-29. DOI: 10.5772/intechopen.97672

Lameed, A.G. & Adetola, J.O. (2012). Species-diversity utilization of salt lick sites at Borgu Sector of Kainji Lake National Park, Nigeria. Biodiversity enrichment in a diverse world, 2(3): 35-62. DOI: 10.5772/51089.

Lawlor, P.G., Lynch, P.B., Caffrey, P.J., O’Reilly, J.J. & O’Connell, M.K. (2005). Measurements of the acid-binding capacity of ingredients used in pig diets. Irish Veterinary Journal, 58(8): 447-452. DOI: 10.1186/2046-0481-58-8-447

Lazarus, B.A., Che-Amat, A., Abdul Halim Shah, M.M., Hamdan, A., Abu Hassi, H., Mustaffa Kamal, F., Azizan, T.R.P.T., Noor, M.H.M., Mustapha, N.M. & Ahmad, H. (2021). Impact of natural salt lick on the home range of Panthera tigris at the Royal Belum Rainforest, Malaysia. Scientific Reports, 11(1): 1-8. DOI: 10.1038/s41598-021-89980-0

Lehmann, J. & Schroth, G. (2002). Nutrient leaching. In Trees, Crops and Soil Fertility: Concepts and Research Methods. Wallingford UK: CABI publishing. DOI: 10.1079/9780851995939.0151

Ling, S.Y., Asis, J. & Musta, B. (2023). Distribution of metals in coastal sediment from northwest sabah, Malaysia. Heliyon, 9(2). DOI: 10.1016/j.heliyon.2023.e13271

Lu, H., Cao, L., Liang, Y., Yuan, J., Zhu, Y., Wang, Y., Gu, Y.n& Zhao, Q. (2017). Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China. Solid Earth, 8(4): 845-855. DOI: 10.5194/se-8-845-2017

Malik, Z.A. & Haq, S.M. (2022). Soil chemical properties-variation with altitude and forest composition: A case study of Kedarnath wildlife Sanctuary, Western Himalaya (India). Journal of Forest and Environmental Science, 38(1): 21-37. DOI: 10.7747/JFES.2022.38.1.21

Mandzhieva, S., Minkina, T., Pinskiy, D., Bauer, T. & Sushkova, S. (2014). The role of soil's particle-size fractions in the adsorption of heavy metals. Eurasian Journal of Soil Science, 3(3): 197-205. DOI: 10.18393/ejss.16003

Matsubayashi, H., Lagan, P., Majalap, N., Tangah, J., Sukor, J.R.A. & Kitayama, K. (2007). Importance of natural licks for the mammals in Bornean inland tropical rain forests. Ecological Research, 22(5): 742-748. DOI: 10.1007/s11284-006-0313-4

Matus, F.J. (2021). Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Scientific Reports, 11(1): 6438. DOI: 10.1038/s41598-021-84821-6

McCauley, A., Jones, C. & Jacobsen, J. (2005). Basic soil properties. Soil and Water Management Module. Montana State University.1(1): 1-12.

Mengel, K., Kirkby, E.A., Kosegarten, H. & Appel T. (2001). Principles of Plant Nutrition. Springer, Dordrecht. 553-571.

Metson, A.J. (1974). Magnesium in New Zealand soils. I. Some factors governing the availability of soil magnesium: a review. New Zealand Journal of Experimental Agriculture. DOI: 10.1080/03015521.1974.10427689

Metz, V., Amram, K. & Ganor, J. (2005). Stoichiometry of smectite dissolution reaction. Geochimica et Cosmochimica Acta, 69: 1755-1772. DOI: 10.1016/j.gca.2004.09.027

Mikkelsen, R. (2010). Soil and Fertilizer Magnesium. Better Crops. 94(2): 26-28.

Mitchell, J. K. & Soga, K. (2005). Fundamentals of Soil Behaviour. 3rd ed. John Wiley and Sons. New York.

Molina, E., León, T.E. & Armenteras, D. (2014). Characteristics of natural salt licks located in the Colombian Amazon foothills. Environmental Geochemistry and Health, 36: 117-129. DOI: 10.1007/s10653-013-9523-1

Montenegro, O.L. (2004). Natural licks as keystone resources for wildlife and people in Amazon. (PhD Thesis), University of Florida. Florida, USA.

Mullin, J.W. (2001). Crystallization (Vol. 124). Butterworth-Heinemann.

Newton-Smith, J. (1967). Geology and mineral resources of the Bidu-Bidu Hills area, Sabah, East Malaysia. Borneo Region Geological Survey Malaysia Report. 15: 109.

Osman, K.T. (2013). Soil as a Part of the Lithosphere. In: Soils. Springer, Dordrecht. DOI: 10.1007/978-94-007-5663-2_2

Othaman, N.C., Isa, M.M., Ismail, R.C., Ahmad, M.I. & Hui, C.K. (2020). Factors that affect soil electrical conductivity (EC) based system for smart farming application. AIP Conference Proceedings, 2203(1): 020055. DOI: 10.1063/1.5142147

Otobo, A. J. T. 1995. The Ecology and Fishery of the Pygmy Herring Sierratherissa leonensis (Thys van Dan Audenaerde, 1969) (Clupeidae) in the Nun River and Taylor Creek of the Niger Delta. Doctoral dissertation. University of Port Harcourt.

Panichev, A.M., Golokhvast, K.S., Gulkov, A.N. & Chekryzhov, I.Y. (2012). Geophagy in animals and geology of kudurs (mineral licks): A review of Russian publications. Environmental Geochemistry and Health, 35(1): 133–152. DOI: 10.1007/s10653-012-9464-0

Prasad, R. & Chakraborty D. (2019). Phosphorus basics: Understanding phosphorus forms and their cycling in the soil. Alabama Coop. Ext. Syst. https://www. aces. edu/blog/topics/crop-production/understanding-phosphorus-forms-and-their-cycling-in-the-soil. Accessed on 24 May 2021.

Primack, R. (1993). Essential of conservation biology. Sinauer Associates Inc. Sunderland, Massachusetts.

Primavesi, A. (1984). Manejo ecológico del suelo: La agricultura en regiones tropicales. 5ta Edición. El Ateneo. Rio de Janeiro, Brazil.

Rahman, M.A., Lee, S.H., Ji, H.C., Kabir, A.H., Jones, C.S. & Lee, K.W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular Sciences, 19(10): 3073. DOI: 10.3390/ijms19103073

Reitemeier, R.F. (1957). Soil potassium and fertility. The Yearbook of Agriculture. States Department of Agriculture. Washington

Rolinec, M., Bíro, D., Gálik, B., Šimko, M. & Juráček, M. (2012). Immunoglobulins in colostrum of sows with porcine reproductive and respiratory syndrome – PRRS. Journal of Central European Agriculture, 13(2): 303-311. DOI: 10.5513/JCEA01/13.2.1049

Rolinec, M., Bíro, D., Gálik, B., Šimko, M., Juráčk, M. & Hanušovský, O. (2018). Essential amino acids index of sow's colostrum. Journal of Central European Agriculture, 19(1): 95-101. DOI: 10.5513/JCEA01/19.1.2028

Ross, D.S. & Ketterings, Q. (1995). Recommended methods for determining soil cation exchange capacity. Recommended soil testing procedures for the northeastern United States. 493(101): 62

Scheffer, F., Schachtschabel, P., Blume, H.P. & Thiele-Bruhn, S. (1966). Lehrbuch der bodenkunde (Vol. 13). Stuttgart: Enke. DOI: 10.1007/978-3-662-49960-3

Senbayram, M., Gransee, A., Wahle, V. & Thiel, H. (2015). Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66(12): 1219-1229. DOI: 10.1071/CP15104

Sim, S.F., Azlan, J.M., Rahman, N.A.H.M.A., Lihan, S. & Kang, P.L. (2020). Mineral characteristics of tropical salt licks in Sarawak, The northwest of Borneo island. Journal of Sustainability Science and Management, 15(8): 53-62. DOI: 10.46754/jssm.2020.12.005

Stroker, T. & Harris, N. (2009). K-Ar dating of authigenic illites: Integrating diagenetic history of the Mesa Verde Group, Piceance Basin, NW Colorado (abs.). AAPG Annual Meeting, 18: 206.

Tobler, M.W., Carrillo-Percastegui, S.E. & Powell, G. (2009). Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. Journal of Tropical Ecology, 25(3): 261-270. DOI: 10.1017/S0266467409005896

Weibel, R., Nielsen, M.T., Therkelsen, J., Jakobsen, F.C., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S.S., Johannessen, P.N. & Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea. Marine and Petroleum Geology, 116: 104290. DOI: 10.1016/j.marpetgeo.2020.104290

Wilson, M. J., Wilson, L., Patey, I. & Shaw, H. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay Minerals, 49(2): 147-164. DOI: 10.1180/claymin.2014.049.2.02

Worden, R.H. & Burley S.D. (2003). Sandstone diagenesis: the evolution of sand to stone. Sandstone diagenesis: Recent and ancient. 1-44. DOI: 10.1002/9781444304459.ch

Worden, R.H. & Morad, S. (2000). Quartz cementation in oil field sandstones: a review of the key controversies. Quartz cementation in sandstones. 1-20. DOI: 10.1002/9781444304237.ch1

Worden, R.H., Griffiths, J., Wooldridge, L.J., Utley, J. E.P., Lawan, A. Y., Muhammed, D.D., Simon, N. & Armitage, P.J. (2020). Chlorite in sandstones. Earth-Science Reviews, 204: 103105.

Yen, J.T. (2000). Anatomy of the digestive system and nutritional physiology. In: Edited by Lewis, A.J., Southern, L.L., eds. Swine Nutrition (Second edition). Boca Raton: CRC Press.

Yost, J.L. & Hartemink, A.E. (2019). Soil organic carbon in sandy soils: A review. Advances in Agronomy, 158: 217-310. DOI: 10.1016/bs.agron.2019.07.004

Downloads

Published

2024-12-23

How to Cite

MOHAMAD MAIDIN, S. N. A., SOMPUD, J., ABD RAHIM, I., SARJADI, M. S., & MUSTA, B. (2024). Physico-Chemical Properties and Mineral Identification of Salt Licks Soil in Segaliud Lokan Forest Reserve: Minerals and Chemistry of Salt Lick Soils. Borneo Journal of Resource Science and Technology, 14(2), 118–134. https://doi.org/10.33736/bjrst.6355.2024