Potential of Local Microorganisms Solution from Chicken Manure as a Bioactivator in Liquid Waste Treatment from the Fish Cracker Processing Industry

Local Microorganisms Solution from Chicken Manure as a Bioactivator

Authors

  • HAMDANI ABDULGANI Doctoral Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro Semarang, Indonesia; Faculty of Engineering, Universitas Wiralodra, Indramayu, Indonesia
  • HADIYANTO Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang
  • SUDARNO Environmental Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang

DOI:

https://doi.org/10.33736/bjrst.6582.2024

Abstract

The wastewater produced by traditional food industry is a source of problem due to its high levels of organic compounds pollutant that can increase the level of chemical oxygen demand (COD) and biological oxygen demand (BOD) values that exceed the established wastewater quality standard thresholds. The difficulty in removing high concentrations of organic material through conventional waste treatment necessitates the use of special treatment methods using local microorganisms’ solution as bioactivators to accelerate the decomposition of organic compounds. This research aims to identify bacteria in local microorganisms’ solution with potential applications in reducing organic compounds by its enzymatic activities. Based on the research results, among the 42 isolates examined, six isolates demonstrated the ability to hydrolyze starch, protein and fat based on qualitative tests. These isolates belong to the genus Bacillus based on partial sequencing of 16S rRNA gene. The qualitative tests confirmed the potential of these isolates as they exhibited enzymatic activities that showed potential to reduce organic compounds.

References

Abd-Elhalim, B.T., Gamal, R.F., El-Sayed, S.M. & Abu-Hussien, S.H. (2023). Optimizing alpha-amylase from Bacillus amyloliquefaciens on bread waste for effective industrial wastewater treatment and textile desizing through response surface methodology. Scientific Reports, 13(1): p.19216. DOI: 10.1038/s41598-023-46384-6.

Agunbiade, M., Oladipo, B., Ademakinwa, A.N., Awolusi, O., Adesiyan, I.M., Oyekola, O., Ololade, O. & Ojo, A. (2022). Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Scientific Reports, 12(1). DOI: 10.1038/s41598-022-15193-8.

Anggraini, S. I., Arfiati, D. & Nursyam, H. (2019). Effectiveness of Bacillus subtilis bacteria as a total organic matter reducer in catfish pond (Clariasgariepinus) cultivation. International Journal of Biotech Trends and Technology, 9(2): 7–10. DOI: 10.14445/22490183/ijbtt-v9i2p602.

Bartasun, P., Cieśliński, H., Bujacz, A., Wierzbicka-Woś, A. & Kur, J. (2013). A study on the interaction of rhodamine B with methylthioadenosine phosphorylase protein sourced from an Antarctic soil metagenomic library. PLoS One, 8(1): p.e55697. DOI: 10.1371/journal.pone.0055697.

Beric, T., Urdaci, M., Stankovic, S. & Knezevic-Vukcevic, J. (2009). RAPD analysis of genetic diversity and qualitative assessment of hydrolytic activities in a collection of Bacillus sp. isolate. Archives of Biological Sciences, 61(4): 645–652. DOI: 10.2298/abs0904645b.

Biswas, T., Banerjee, S., Saha, A., Bhattacharya, A., Chanda, C., Gantayet, L.M., Bhadury, P. & Chaudhuri, S.R. (2022). Bacterial consortium based petrochemical wastewater treatment: from strain isolation to industrial effluent treatment. Environmental Advances, 7: 100132. DOI: 10.1016/j.envadv.2021.100132.

Brust, H., Orzechowski, S., & Fettke, J. (2020). Starch and glycogen analyses: methods and techniques. Biomolecules, 10(7): 1020. DOI: 10.3390/biom10071020.

Chen, M., Li, A., Yang, M., Zhang, M., Zhou, L. & Zhu, H. (2020). Analysis of a heterotrophic nitrification bacteria isolated from livestock and poultry wastewater and its nitrogen removal characteristics. Modern Food Science and Technology, 10: 50–58.

Deng, J., Jia, M., Zeng, Y. Q., Li, W., He, J., Ren, J., Bai, J., Zhang, L., Li, J. & Yang, S. (2022). Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere. Environmental Pollution, 292: 118306. DOI: 10.1016/j.envpol.2021.118306.

Earl, A.M., Losick, R. and Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in microbiology, 16(6): pp.269-275. DOI: 10.1016/j.tim.2008.03.004.

El-Bestawy, E. (2014). Decontamination of Domestic Wastewater Using Suspended Individual and Mixed Bacteria in Batch System. Journal of Bioremediation & Biodegradation, 05(05). DOI: 10.4172/2155-6199.1000231.

Gameissa, M.W. & Suprihatin, N.S.I. (2012). Pengolahan tersier Limbah Cair Industri Pangan dengan Teknik Elektrokoagulasi Menggunakan Elektroda Stainless Steel. Agro Industri Indonesia, 1(1): 31–37.

Gatson, J.W., Benz, B.F., Chandrasekaran, C., Satomi, M., Venkateswaran, K. & Hart, M.E. (2006). Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. International Journal of Systematic and Evolutionary Microbiology, 56 (7): 1475–1484. DOI: 10.1099/ijs.0.63946-0.

Gautam, A. (2022). DNA Isolation by Chelex method in DNA and RNA isolation techniques for non-experts. Cham: Springer International Publishing. pp. 79–84.

Gauvry, E., Mathot, A. G., Couvert, O., Leguérinel, I. & Coroller, L. (2021). Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. International Journal of Food Microbiology, 337: 108915. DOI: 10.1016/j.ijfoodmicro.2020.108915.

Gotor-Vila, A., Teixidó, N., Sisquella, M., Torres, R. & Usall, J. (2017). Biological characterization of the biocontrol agent Bacillus amyloliquefaciens CPA-8: The effect of temperature, pH and water activity on growth, susceptibility to antibiotics and detection of enterotoxic genes. Current Microbiology, 74(9): 1089–1099. DOI: 10.1007/s00284-017-1289-8.

Hadi, R.A. (2019). Pemanfaatan MOL (Mikroorganisme Lokal) dari Materi yang Tersedia di Sekitar Lingkungan. Agroscience (AGSCI), 9(1): 93. DOI: 10.35194/agsci.v9i1.637.

Hlordzi, V., Kuebutornye, F.K.A., Afriyie, G., Abarike, E.D., Lu, Y., Chi, S. & Anokyewaa, M.A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18: 100503. DOI: 10.1016/j.aqrep.2020.100503.

Huang, T.H., Wang, P.W., Yang, S.C., Chou, W.L. & Fang, J.Y. (2018). Cosmetic and therapeutic applications of fish oil’s fatty acids on the skin. Marine Drugs, 16(8): 256. DOI: 10.3390/md16080256.

Hui, C., Guo, X., Sun, P., Khan, R.A., Zhang, Q., Liang, Y. & Zhao, Y.H. (2018). Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. Bioresource Technology, 248: 146–152. DOI: 10.1016/j.biortech.2017.06.176.

Indasah, I. & Muhith, A. (2020). Local Microorganism From “Tape” (Fermented Cassava) In composition and its effect on physical, chemical and biological quality in environmental. IOP Conference Series: Earth and Environmental Science, 519: 012003. DOI: 10.1088/1755-1315/519/1/012003.

Ji, C., Wang, X., Song, X., Zhou, Q., Li, C., Chen, Z., Gao, Q., Li, H., Li, J., Zhang, P. & Cao, H. (2021). Effect of Bacillus velezensis JC-K3 on endophytic bacterial and fungal diversity in wheat under salt stress. Frontiers in Microbiology, 12. DOI: 10.3389/fmicb.2021.802054.

Jimenez-Lopez, C., Carpena, M., Lourenço-Lopes, C., Gallardo-Gomez, M., Lorenzo, J.M., Barba, F.J., Prieto, M.A. & Simal-Gandara, J. (2020). Bioactive compounds and quality of extra virgin olive oil. Foods, 9(8): 1014. DOI: 10.3390/foods9081014.

John, E.M. Krishnapriya, K. & Sankar, T. (2020). Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526: 735390. DOI: 10.1016/j.aquaculture.2020.735390.

Lim, S.Y., Steiner, J.M. & Cridge, H. (2022). Lipases: it’s not just pancreatic lipase! American Journal of Veterinary Research, 83(8). DOI: 10.2460/ajvr.22.03.0048.

Logan, N.A. & Vos, P.D. (2015). Bacillus. Bergey's manual of systematics of archaea and bacteria, pp.1-163. DOI: 10.1002/9781118960608.gbm00

Meekwamdee, B., Suebsaiprom, W. & Chunhachart, O. (2023). Study on effective of Bacillus subtilis for domestic wastewater treatment in the royal thai army chemical department area. Journal of Namibian Studies: History Politics Culture, 33. DOI: 10.59670/jns.v33i.1014.

Mehetre, G. T., Dastager, S. G. & Dharne, M. S. (2019). Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Science of the Total Environment, 679: 52–60. DOI: 10.1016/j.scitotenv.2019.04.376.

Mgbechidinma, C.L., Zheng, G., Baguya, E.B., Zhou, H., Okon, S.U. & Zhang, C. (2023). Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research, 28(2). DOI: 10.4491/eer.2022.034.

Nair, A.S., Al-Bahry, S. & Sivakumar, N. (2020). Co-production of microbial lipids and biosurfactant from waste office paper hydrolysate using a novel strain Bacillus velezensis ASN1. Biomass Conversion and Biorefinery, 10(2): pp.383-391. DOI: 10.1007/s13399-019-00420-6.

Othman, M.F., Abu Hasan, H., Muhamad, M.H. & S. Babaqi, B. (2023). Biopolishing of Domestic Wastewater Using Polyvinyl Alcohol – Supported Biofilm of Bacterial Strain Bacillus velezensis Isolate JB7. Journal of Ecological Engineering. 24(8): 33–42. DOI: 10.12911/22998993/165780.

Pervez, M.N., Mishu, M.R., Stylios, G.K., Hasan, S.W., Zhao, Y., Cai, Y., Zarra, T., Belgiorno, V. & Naddeo, V. (2021). Sustainable treatment of food industry wastewater using membrane technology: A short review. Water, 13(23): p.3450. DOI: 10.3390/w13233450.

Prasad, M.P. & Manjunath, K. (2011). Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian Journal of Biotechnology, 10: 121–124.

Pratika, M., Ananda, M. & Suwastika, I.N. (2021). Protease activity from bacterial isolates of Nepenthes maxima reinw. ex nees. Journal of Physics: Conference Series, 1763(1): 012092. DOI: 10.1088/1742-6596/1763/1/012092

Rahimi, S., Modin, O., Roshanzamir, F., Neissi, A., Saheb Alam, S., Seelbinder, B., Pandit, S., Shi, L. & Mijakovic, I. (2020). Co-culturing Bacillus subtilis and wastewater microbial community in a bio-electrochemical system enhances denitrification and butyrate formation. Chemical Engineering Journal, 397: 125437. DOI: 10.1016/j.cej.2020.125437.

Ravel J. & Fraser C.M. (2005). Genomics at the genus scale. Trends Microbiol, 13(3): 95-97. DOI: 10.1016/j.tim.2005.01.004.

Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A. & Ashraf, M. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7. DOI: 10.3389/fbioe.2019.00110.

Safitri, R., Priadie, B., Miranti, M. and Astuti, A.W. (2015). Ability of bacterial consortium Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of Waste Water in Cisirung Waste Water Treatment Plant. AgroLife Scientific Journal, 4(1): 146-152.

Sahendra, S.L., Hamsyah, R.A. & Sa'diyah, K., (2021). Pengolahan Limbah Cair Pabrik Gula Menggunakan Adsorben dari Kotoran Sapi dan Ampas Tebu. Chemical Engineering Research Articles, 4(1): pp.31-38. DOI: 10.25273/cheesa.v4i1.8416.31-38.

Sandle, T. (2016). Pharmaceutical Microbiology. Woodhead Publishing. DOI: 10.1016/c2014-0-00532-1.

Sondhi, S., Kumar, D., Angural, S., Sharma, P. & Gupta, N. (2018). Enzymatic approach for bioremediation of effluent from pulp and paper industry by thermo alkali stable laccase from Bacillus tequilensis SN4. Journal of Commercial Biotechnology, 23(4). DOI: 10.5912/jcb799.

Su, Y., Liu, C., Fang, H. & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories, 19 (1). DOI: 10.1186/s12934-020-01436-8.

Sundarram, A. & Murthy, T.P.K. (2014). α-amylase production and applications: a review. Journal of Applied & Environmental Microbiology, 2(4): pp.166-175. DOI: 10.12691/jaem-2-4-10.

Sumpavapol, P., Tongyonk, L., Tanasupawat, S., Chokesajjawatee, N., Luxananil, P., and Visessanguan, W. (2010). Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. International Journal of Systematic and Evolutionary Microbiology, 60(10):2364–2370. DOI: 10.1099/ijs.0.018879-0.

Turnbull PCB. (1996). Bacillus. In: Baron S, editor. Medical microbiology. 4th ed. galveston (TX): University of Texas Medical Branch at Galveston. Chapter 15. PMID: 21413260.

Wang, Z., Liu, H. & Cui, T. (2023). Identification of a strain degrading ammonia nitrogen, optimization of ammonia nitrogen degradation conditions, and gene expression of key degrading enzyme nitrite reductase. Fermentation, 9(4): 397. DOI: 10.3390/fermentation9040397.

Yunilas, Y., Siregar, A.Z., Mirwhandhono, E., Purba, A., Fati, N., & Malvin, T. (2022). Potensi dan Karakteristik Larutan Mikroorganisme Lokal (MOL) Berbasis Limbah Sayur sebagai Bioaktivator dalam Fermentasi. Journal of Livestock and Animal Health, 5(2), 53–59. DOI: 10.32530/jlah.v5i2.540.

Zaman, B., Sutrisno, E., Sudarno, S., Simanjutak, M.N. & Krisnanda, E. (2020). Natural Soil as Bio-activator for Wastewater Treatment System. IOP Conference Series: Earth and Environmental Science, 448(1): 012032. DOI: 10.1088/1755-1315/448/1/012032.

Downloads

Published

2024-12-23

How to Cite

ABDULGANI, H., HADIYANTO, & SUDARNO. (2024). Potential of Local Microorganisms Solution from Chicken Manure as a Bioactivator in Liquid Waste Treatment from the Fish Cracker Processing Industry: Local Microorganisms Solution from Chicken Manure as a Bioactivator. Borneo Journal of Resource Science and Technology, 14(2), 98–107. https://doi.org/10.33736/bjrst.6582.2024