Characterizing Fatty Acid Profiles and Evaluating Antibacterial Activity of Edible Yellow Puffer Fish, Xenopterus naritus

Fatty Acid Composition and Antibacterial Activities of Puffer Fish

Authors

  • SAMSUR MOHAMAD Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • NUR EQMAL DINIE NOR AZMI Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • AHMAD SYAFIQ AHMAD NASIR Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • JULIAN RANSANGAN Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • RABUYAH NI Faculty of Applied Science, Universiti Teknologi Mara Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.6896.2024

Keywords:

Fish oil profiles, omega-3, antimicrobial activity, Xenopterus naritus

Abstract

Puffer fish oil extracted from Xenopterus naritus represents a beneficial source of bioactive compounds with health-promoting properties. Despite the known benefits of puffer fish oil, there is a lack of detailed information on its fatty acid composition. This study aimed to fill this gap by investigating the fatty acid profiles of puffer fish oil extracted from the liver and muscle tissues. The oil was extracted using the solvent Bligh & Dyer method, and the samples were derivatized into fatty acid methyl esters (FAME) before being analyzed via Shimadzu QP2010 Plus gas chromatography-mass spectrometry (GC-MS). This analysis highlighted the prevalence of omega-3 fatty acids, particularly Docosahexaenoic acid (DHA) (8.28 ± 0.08% in liver, 6.15 ± 0.33% in muscle oil) and Eicosapentaenoic acid (EPA) (3.29 ± 0.12% in liver and 2.16 ± 0.06% in muscle oil), along with the abundance of omega-6 and omega-9 fatty acids, including arachidonic and oleic acid. Additionally, the antimicrobial properties of these fish oils were assessed against Gram-negative and Gram-positive bacteria using the Minimum Inhibitory Concentration (MIC) method, revealing promising inhibitory effects, with liver oil demonstrating greater efficacy. These findings suggest that puffer fish oil is rich in beneficial fatty acids and possesses antimicrobial properties that could find applications in food preservation, medicine, and agriculture, thereby offering a fresh perspective on the functional and nutritional value of Xenopterus naritus.

References

Abbott, K.A., Burrows, T.L., Acharya, S., Thota, R. N., & Garg, M.L. (2020). DHA-enriched fish oil reduces insulin resistance in overweight and obese adults. Prostaglandins, Leukotrienes and Essential Fatty Acids, 159, 102154. DOI: 10.1016/j.plefa.2020.102154.

Abedi, E., & Sahari, M.A. (2014). Long‐chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Science and Nutrition, 2(5): 443-463. DOI: 10.1002/fsn3.121.

Ahmad Nasir, A.S., Mohamad, S., & Mohidin, M. (2017). The first reported artificial propagation of yellow puffer, Xenopterus naritus (Richardson, 1848) from Sarawak, Northwestern Borneo. Aquaculture Research, 48(8): 4582-4589. DOI: 10.1111/are.13103.

Alfio, V.G., Manzo, C., & Micillo, R. (2021). From fish waste to value: an overview of the sustainable recovery of omega-3 for food supplements. Molecules, 26(4): 1002. DOI: 10.3390/molecules26041002.

Bernasconi, A.A., Wiest, M.M., Lavie, C.J., Milani, R.V., & Laukkanen, J.A. (2021). Effect of Omega‐3 dosage on cardiovascular outcomes: An updated meta‐analysis and meta‐regression of interventional trials. Mayo Clinic Proceedings, 96(2): 304–313. DOI: 10.1016/j.mayocp.2020.08.034.

Calo, J.R., Crandall, P.G., O'Bryan, C.A., & Ricke, S.C. (2015). Essential oils as antimicrobials in food systems–A review. Food Control, 54: 111-119. DOI: 10.1016/j.foodcont.2014.12.040.

Carver, J.D., Benford, V.J., Han, B., & Cantor, A.B. (2001). The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Research Bulletin, 56(2): 79–85. DOI: 10.1016/s0361-9230(01)00551-2.

Chanda, W., Joseph, T.P., Guo, X.F., Wang, W.D., Liu, M., Vuai, M. S., Padhiar, A.A., & Zhong, M.T. (2018). Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens. Journal of Zhejiang University-SCIENCE B, 19(4), 253-262. DOI: 10.1631/jzus.B1700063.

Chen, J., Jayachandran, M., Bai, W., & Xu, B. (2022). A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 369: 130874. DOI: 10.1016/j.foodchem.2021.130874.

Coraça-Huber, D.C., Steixner, S., Wurm, A., & Nogler, M. (2021). Antibacterial and anti-biofilm activity of omega-3 polyunsaturated fatty acids against periprosthetic joint infections-isolated multi-drug resistant strains. Biomedicines, 9(4): 334. DOI: 10.3390/biomedicines9040334.

Cortina, M.S., & Bazan, H.E. (2011). Docosahexaenoic acid, protectins and dry eye. Current Opinion in Clinical Nutrition and Metabolic Care, 14(2): 132–137. DOI: 10.1097/mco.0b013e328342bb1a.

Desbois, A.P., & Smith, V.J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85: 1629-1642. DOI: 10.1007/s00253-009-2355-3.

European Committee for Antimicrobial Susceptibility Testing (EUCAST). (2003). EUCAST of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clinical Microbiology and Infection, 9: 1-7. DOI: 10.1046/j.1469-0691.2000.00149.x.

Fu, Y.W., Wang, Y.D., Gao, H., Li, D.H., Jiang, R.R., Ge, L.R., Tong, C., & Xu, K. (2021). Associations among dietary omega‐3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators of Inflammation, 11. DOI: 10.1155/2021/8879227.

Guil-Guerrero, J.L., & Belarbi, E.H. (2001). Purification process for cod liver oil polyunsaturated fatty acids. Journal of the American Oil Chemists' Society, 78: 477-484. DOI: 10.1007/s11746-001-0289-9.

Holub, D.J., & Holub, B.J. (2004). Omega-3 fatty acids from fish oils and cardiovascular disease. Molecular and Cellular Biochemistry, 263: 217-225.

Huang, C.B., George, B., & Ebersole, J.L. (2010). Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Archives of Oral Biology, 55(8): 555-560. DOI: 10.1016/j.archoralbio.2010.05.009.

Ichihara, K. I., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5): 535-539. DOI: 10.1007/BF02522648.

Inguglia, L., Chiaramonte, M., Di Stefano, V., Schillaci, D., Cammilleri, G., Pantano, L., Mauro, M., Vazzana, M., Ferrantelli, V., Nicolosi, R., & Arizza, V. (2020). Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ, 8, e9299. DOI: 10.7717/peerj.9299.

Innes, J.K., & Calder, P.C. (2018). Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132: 41-48. DOI: 10.1016/j.plefa.2018.03.004.

Iverson, S.J., Lang, S.L.C., & Cooper, M.H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11): 1283–1287. DOI: 10.1007/s11745-001-0843-0.

Kannan, N., Rao, A.S., & Nair, A. (2021). Microbial production of omega‐3 fatty acids: an overview. Journal of Applied Microbiology, 131(5): 2114-2130. DOI: 10.1111/jam.15034.

Krauss-Etschmann, S., Hartl, D., Rzehak, P., Heinrich, J., Shadid, R., del Carmen Ramírez-Tortosa, M., Campoy, C., Pardillo, S., Schendel, D.J., Decsi, T. and Demmelmair, H., 2008. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-β levels after fish oil supplementation of pregnant women. Journal of Allergy and Clinical Immunology, 121(2): pp.464-470. DOI: 10.1016/j.jaci.2007.09.018.

Kromhout, D., Giltay, E.J., & Geleijnse, J.M. (2010). n–3 Fatty acids and cardiovascular events after myocardial infarction. New England Journal of Medicine, 363(21): 2015-2026. DOI: 10.1056/NEJMoa1003603.

Martins, N., Magalhães, R., Vieria, L., Couto, A., Serra, C.R., Maia, M.R., Fonseca, A.J., Cabrita, A.R., Pousao-Ferreira, P., Castro, C., Peres, H., & Oliva-Teles, A. (2023). Dietary oleic acid supplementation improves feed efficiency and modulates fatty acid profile and cell signaling pathway in European sea bass (Dicentrarchus labrax) juveniles fed high-lipid diets. Aquaculture, 576: 739870. DOI: 10.1016/j.aquaculture.2023.739870.

Mohd Nor Azman, A., Samsur, M., & Othman, M. (2014). Distribution of tetrodotoxin among tissues of puffer fish from Sabah and Sarawak waters. Sains Malaysiana, 43(7): 1003-1011.

Mohd Nor Azman, A., Samsur, M., Mohammed, M., Shabdin, M.L., & Fasihuddin, B.A. (2015). Assessment of proximate composition and tetrodotoxin content in the muscle of Yellow puffer fish, Xenopterus naritus (Richardson 1848) from Sarawak, Malaysia. International Food Research Journal, 22(6).

Mohd Nor Azman. A. & Wan Norhana, M.N. (2013). Detection of tetrodotoxin and soxitoxin in dried salted yellow puffer fish (Xenopterus naritus) eggs from Satok Market, Kuching, Sarawak. International Food Research Journal, 20(5): 2963-2966.

Nazir, N., Diana, A. & Sayuti, K. (2017). Physicochemical and fatty acid profile of fish lipid from head of tuna (Thunnus albacares) extracted from various extraction method. International Journal on Advanced Science, Engineering and Information Technology, 7(2): 709-715. DOI: 10.18517/ijaseit.7.2.2339.

Noguchi, T., Arakawa, O., & Takatani, T. (2006). TTX accumulation in puffer fish. Comparative Biochemistry and Physiology, Part D 1:145-152. DOI: 10.1016/j.cbd.2005.10.006.

Noutsa, B.S., Tchabong, S.R., Djitieu, A.D.D., Dongmo, F.F.D., Ngamga, F.H.N., Zokou, R., Tamgue, O., Ngane, R.A.N., & Tchoumbougnang, F. (2022). Chemical characterization and antibacterial properties of Fontitrygon margarita (Günther, 1870) liver oil. Journal of Lipids, 2022(1): 9369387. DOI: 10.1155/2022/9369387.

Quinn, J. F., Raman, R., Thomas, R. G., Yurko-Mauro, K., Nelson, E. B., Van Dyck, C., ... & Aisen, P. S. (2010). Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama, 304(17): 1903-1911. DOI: 10.1001/jama.2010.1510.

Ramakrishnan, U., Stein, A.D., Parra-Cabrera, S., Wang, M., Imhoff-Kunsch, B., Juárez-Márquez, S., Rivera, J. and Martorell, R., 2010. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food and nutrition bulletin, 31(2_suppl2): pp.S108-S116. DOI: 10.1177/15648265100312S203.

Schroeder, M., Brooks, B.D., & Brooks, A.E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8(1): 39. DOI: 10.3390/genes8010039.

Simplice, M.R., Macaire, W.H., Hervé, N.N.F., Fabrice, T.D., Justin, D.D., François, T., & Jules-Roger, K. (2018). Chemical composition and antibacterial activity of oils from Chrysicthys nigrodigitatus and Hepsetus odoe, two freshwater fishes from Yabassi, Cameroon. Lipids in Health and Disease, 17(1): 1-7. DOI:10.1186/s12944-018-0690-z.

Tallima, H., & El Ridi, R. (2018). Arachidonic acid: physiological roles and potential health benefits–a review. Journal of Advanced Research, 11: 33-41. DOI: 10.1016/j.jare.2017.11.004.

Titova, O.E., Sjögren, P., Brooks, S.J., Kullberg, J., Ax, E., Kilander, L., Riserus, U., Cederholm, T., Larsson, E. M., Johansson, L., Ahlström, H., Lind, L., Schiöth, H.B., & Benedict, C. (2013). Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age, 35(4): 1495–1505. DOI: 10.1007/s11357-012-9453-3.

Troesch, B., Eggersdorfer, M., Laviano, A., Rolland, Y., Smith, A.D., Warnke, I., Weimann, A., & Calder, P.C. (2020). Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients, 12(9): 2555. DOI: 10.3390/nu12092555.

von Schacky, C. (2021). Importance of EPA and DHA blood levels in brain structure and function. Nutrients, 13(4): 1074. DOI: 10.3390/nu13041074.

Zaidul, I.S.M., Norulaini, N.N., Omar, A.M., Sato, Y., & Smith Jr, R.L. (2007). Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering, 81(2): 419-428. DOI: 10.1016/j.jfoodeng.2006.11.019

Downloads

Published

2024-12-23

How to Cite

MOHAMAD, S., NOR AZMI, N. E. D., AHMAD NASIR, A. S., RANSANGAN, J., & NI, R. (2024). Characterizing Fatty Acid Profiles and Evaluating Antibacterial Activity of Edible Yellow Puffer Fish, Xenopterus naritus: Fatty Acid Composition and Antibacterial Activities of Puffer Fish. Borneo Journal of Resource Science and Technology, 14(2), 31–40. https://doi.org/10.33736/bjrst.6896.2024