Antagonistic Potential of a Phosphate Solubilizing Bacteria (B. cereus PS1.1, B. cereus PS1.2, B. cereus PS1.4) Against the Patogent Fungus Ganoderma sp. Isolated from Basal Stem of Oil Palm (Elaeis guineensis Jacq.) with Rot Disease

Phosphate-Solubilizing B. cereus vs. Oil Palm Ganoderma

Authors

  • SITI KHOTIMAH Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
  • RAHMAWATI Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
  • MUKARLINA Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
  • ADE INDRIANI Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, West Kalimantan, Indonesia

DOI:

https://doi.org/10.33736/bjrst.7024.2024

Abstract

Ganoderma sp. is a pathogenic fungus whose attack can cause basal stem rot disease of oil palm (Elaeis guineensis Jacq.). Disease control using phosphate solubilizing bacteria (PSB), namely Bacillus cereus can be an alternative to biological control. The purpose of this study was to determine the antagonistic ability of PSB (B. cereus PS1.1, B. cereus PS1.2, B. cereus PS1.4) in inhibiting the growth of Ganoderma sp. BP1 and changes in hyphal morphology of Ganoderma sp. BP1 after antagonistic testing. The research was conducted from January to May 2023 at the Microbiology Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak.  Antagonist testing used a completely randomized design (CRD) with the treatments consisted of Ganoderma sp. BP1 (negative control), 1% hexaconazole fungicide (positive control), PSB isolates PS1.1, PS1.2 and PS1.4. The test method used the dual culture on Sabouraud Dextrose Agar (SDA) media with each treatment repeated four times so that 20 experimental units were obtained. The results showed that PSB isolate PS1.4 had strong inhibition with an inhibition zone diameter of 11.01 mm, while isolates PS1.1 and PS1.2 had moderate inhibition with inhibition zone diameters of 9.43 mm and 9.45 mm, respectively, against Ganoderma sp. BP1. Hyphal morphology changes in of Ganoderma sp. BP1 that occurred after the antagonist test consist of lysed hyphae, twisted hyphae, hook-like hyphal tips, curly hyphae, bulbous hyphae, branched hyphae and bent hyphal ends.

References

Aranda, F.J., Teruel, J.A. & Ortiz, A. (2005). Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochimica et Biophysica Acta (BBA) Biomembranes, 1713(1):51-56.

Asril, M. (2011). Kemampuan bakteri tanah dalam menghambat pertumbuhan Ganoderma boninense dan Fusarium oxysporum secara in vitro dan uji penghambatan penyakit layu fusarium pada benih cabai merah. (Thesis). Universitas Sumatera Utara, Medan.

Asril, M., Lisafitri, Y. & Siregar, B.A. (2022). Antagonism activity of phosphate solubilizing bacteria against Ganoderma philippii and Fusarium oxysporum of Acacia plants. Journal of Multidisciplinary Applied Natural Science, 2(2):82-89. DOI: 10.47352/jmans.2774-3047.118

Atlas, R.M. (2004). Handbook of Microbiological Media, Thrid Edition. Boca Raton: CRC Press.

Cappucino, J.G. & Sherman, N. (2013). Manual Laboratorium Mikrobiologi. Jakarta: EGC. Penerjemah: Miftahurrahmah N. Ed ke- 8.

Claudia, K.M., Nursyirwani, N. & Effendi, I. (2021). Biodegradability of proteolytic bacteria in Mangrove ecosystems. Journal of Coastal and Ocean Sciences, 2(2): 120-126. DOI: 10.31258/jocos.2.2.120-126.

David, W.W. & Stout, T.R. (1971). Disc plate method of microbiological antibiotic assay. Microbiology, 22(4): pp.659-665.

Dendang, B. (2015). Uji antagonisme Trichoderma spp. terhadap Ganoderma sp. yang menyerang tanaman Sengon secara in vitro. Jurnal Penelitian Kehutanan Wallacea, 4(2): 147-156.

Djojosumarto, P. (2008). Panduan Lengkap Pestisida dan Aplikasinya. Jakarta Pusat: Agro Media.

Ekowati, C.N., Shintia, R., Umar, S. & Irawan, B. (2022). The potential of soil bacterial isolates from Liwa Botanical Gardens, West Lampung as phosphate solubilizing bacteria. Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati (J-BEKH), 9(1): 83-89.,DOI: 10.23960/jbekh.v9i1.203.

Fitriatin, B.N, Dewi, Y.W. & Sofyan, E.T. (2020). Antagonism activity of phosphate solubilizing microbes and nitrogen fixing bacteria toward Fusarium sp. International Journal of Environment, Agriculture and Biotechnology, 5(6): 1538-1540.

Flori, F., Mukarlina, M. & Rahmawati, R. (2020). Potensi antagonis isolat bakteri Bacillus spp. asal rizosfer tanaman Lada (Piper nigrum L.) sebagai agen pengendali jamur Fusarium sp. Jurnal Biologi Makassar, 5(1): 111-120.

Halo, B.A., Al-Yahyai, R.A., Maharachchikumbura, S.S. & Al- Sadi, A.M. (2019). Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium induced damping off of Cucumbers and Tomatoes. Scientific reports, 9(1): 1-10. DOI: 10.1038/s41598-019-47736-x.

Hu, J., Dong, B., Wang, D., Meng, H., Li, X. & Zhou, H. (2023). Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites. Archives of Microbiology, 205(1): 8. DOI: 10.1007/s00203-022-03351-5.

Istikorini, Y. (2002). Pengendalian penyakit tumbuhan secara hayati yang ekologis dan berkelanjutan. Makalah Falsafah Saint (PPs 702). Bogor: Institut Pertanian Bogor.

Javandira, C., Aini, L.Q. & Abadi, A.L. (2013). Pengendalian penyakit busuk lunak umbi Kentang (Erwinia carotovora) dengan memanfaatkan agens hayati Bacillus subtilis dan Pseudomonas fluorescens. Jurnal Hama dan,Penyakit Tumbuhan, 1(1): 90-97.

Kalam, A. & Mukherjee, A.K. (2001). Influence of hexaconazole, carbofuran, and ethion on soil microflora and dehydrogenase activities in soil and intact cell. Indian Journal of Experimental Biology, 39: 90-94.

Khotimah, S. (2021). Potensi jamur dan bakteri pendegradasi selulosa serta bakteri pelarut fosfat, penambat nitrogen non symbiosis, dan penghasil IAA pada berbagai tingkatan kematangan gambut sebagai kandidat biofertilizer. (Dissertation). Brawijaya University, Malang.

Liu, L., Wang, Q., Zhang, X., Liu, J., Zhang, Y. & Pan, H. (2018). Ssams2 a gene encoding GATA transcription factor, is required for appressoria formation and chromosome segregation in Sclerotinia sclerotiorum. Frontiers in Microbiology, 9: 418172. DOI: 10.3389/fmicb.2018.03031

Loekas, S. (2008). Pengantar Pengendalian Hayati Penyakit Tanaman. Jakarta: PT. Raja Grafindo Persada.

Lorito, M.G., Harman, E., Hayes, C.K., Broadway, R.M., Tronsmo, S.L. & Woo, Di Pietro, A. (1993). Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity or purified endochitinase and chitobiosidase. Phytopathol, 83(3): 302-307.

Mahmud, Y., Cindy, R. & Syukra, I. (2020). Efektivitas Trichoderma virens dalam mengendalikan Ganoderma boninense di pre nursery Kelapa Sawit pada medium gambut. Jurnal Agroekoteknologi, 11(1): 11-16.

Maznah, Z., Halimah, M., Ismail, S. & Idris, A.S. (2015). Dissipation of the fungicide hexaconazole in oil palm plantation. Environmental Science and Pollution Research. 22(24): 19648-19657. DOI:10.1007/s11356-015-5178-z.

Nisa, M., Aini, F. & Maritsa, H.U. (2020). Aktivitas antagonistik bakteri selulolitik asal rhizosfer Kelapa Sawit (Elaeis guineensis Jacq.) terhadap Ganoderma boninense Pat. Al-Kauniyah: Jurnal Biologi, 13(1): 9-19.

Prasetyo, E.A., Susanto, A. & Utomo, C. (2008). Metode penghindaran penyakit busuk pangkal batang Kelapa Sawit (Ganoderma boninense) dengan sistem lubang tanam besar. Jurnal Penelitian Kelapa Sawit, 16(2): 77-86.

Pratiwi, A.R. (2002). Deteksi ergosterol sebagai indikator kontaminasi cendawan pada tepung terigu. Jurnal Teknologi Industri Pangan, 8(3): 256-259.

Purnamasari, M.I., Prihatna, C., Gunawan, A.W. & Suwanto, A. (2012). Isolasi dan identifikasi secara molekuler Ganoderma spp. yang berasosiasi dengan penyakit busuk pangkal batang di Kelapa Sawit. Jurnal Fitopatologi Indonesia, 8(1): 9-15.

Rosmegawati. (2021). Peran aspek tehnologi pertanian Kelapa Sawit untuk meningkatkan produktivitas produksi Kelapa Sawit. Jurnal Agrisia, 13(2): 73-90.

Sakinah, A.L. & Enny, Z. (2014). Resistensi Azotobacter terhadap HgCl2 yang berpotensi menghasilkan enzim merkuri reductase. Jurnal Sains dan Seni Pomits, 3(2): 84-86.

Sela, F.M., Rianto, F. & Syahputra, E. (2022). Pemanfaatan bakteri pelarut fosfat dalam mengendalikan penyakit hawar pelepah pada Padi Ciherang Merah. Jurnal Sains Pertanian Equator, 11(4): 225-232.

Semangun, H. (2008). Penyakit-Penyakit Tanaman Perkebunan di Indonesia. Yogyakart: Universitas Gadjah Mada.

Sijpesteijn, A.K. (1970). Biochemical modes of action of agricultural fungicides. World Review of Pest Control, 9: 85-93.

Situmorang, Y.A., Bakti, D. & Hasanuddin. (2015). Dampak beberapa fungisida terhadap pertumbuhan koloni jamur Metarhizium anisopliae (Metch) Sorokin di laboratorium. Jurnal Online Agroekoteknologi, 1(3): 147-159.

Son, B., Yun, J., Lim, J.A., Shin, H., Heu, S. & Ryu, S. (2012). Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC microbiology, 12(1): 1-9. DOI: 10.1186/1471-2180-12-33.

Surendran, A., Siddiqui, Y., Saud, H.M., Ali, N.S. & Manickam, S. (2017). The antagonistic effect of phenolic compounds on ligninolytic and cellulolytic enzymes of Ganoderma boninense, causing basal stem rot in oil palm. International Journal of Agriculture & Biology, 19(6): 1437-1446. DOI: 10.17957/IJAB/15.0439.

Suryanto, D., Wibowo, R.H., Siregar, E.B.M. & Munir, E. (2012). A possibility of chitinolytic bacteria utilization to control basal stems disease caused by Ganoderma boninense in oil palm seedling. African Journal of Microbiology Research, 6(9): 2053-2059. DOI: 10.5897/AJMR11.1343.

Suryanto, D., Yeldi, N. & Munir, E. (2016). Antifungal activity of endophyte bacterial isolates from torch Ginger (Etlingera elicitor (Jack.) RM Smith) root to some pathogenic fungal isolate. International Journal of Pharm Tech Research, 9(8): 340-347.

Susanto, A., Prasetyo, A.E., Priwiratama, H., Wening, S. & Surianto, S. (2013). Ganoderma boninense penyebab penyakit busuk batang atas Kelapa Sawit. Jurnal Fitopatologi Indonesia, 9(4), 123-123.

Takayama, Y., Mamnun, Y.M., Trickey, M., Dhut, S., Masuda, F., Yamano, H., Toda, T. & Saitoh, S. (2010). Hsk1- and SCFPof3-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Developmental Cell, 18(3-3): 385-396.

Ummi, N. (2018). Uji Bakteri Antagonis Terhadap Perkembangan Penyakit Busuk Pangkal Batang Kelapa Sawit (Ganoderma boninense Pat.) di Laboratorium. (Thesis), Universitas Sriwijaya, Palembang.

Wahyuni, M., Simanjuntak, J.H. & Sitompul, I.O. (2018). Efektivitas fungisida berbahan aktif heksakonazol terhadap penyakit jamur akar putih bibit tanaman karet (Hevea brasiliensis). Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian, 3(1), 1-10.

Waluyo, L. (2008). Teknik Metode Dasar Mikrobiologi. Malang: Universitas Muhamadiyah. Malang Press.

Widiantini, F., Yulia, E. & Nasahi, C. (2018). Potensi antagonisme senyawa metabolit sekunder asal bakteri endofit dengan pelarut metanol terhadap jamur G. boninense Pat. Agrikultura, 29(1): 55-60.

Yati, T. (2019). Kemampuan Bakteri Rizosfer Kelapa Sawit di PT Bumitama Gunajaya Agro, Kalimantan sebagai Antagonis Jamur Ganoderma boninense Pat. Dan Pemacu Pertumbuhan Tanaman. [Thesis], Universitas Lampung, Lampung.

Downloads

Published

2024-12-23

How to Cite

KHOTIMAH, S., RAHMAWATI, MUKARLINA, & INDRIANI, A. (2024). Antagonistic Potential of a Phosphate Solubilizing Bacteria (B. cereus PS1.1, B. cereus PS1.2, B. cereus PS1.4) Against the Patogent Fungus Ganoderma sp. Isolated from Basal Stem of Oil Palm (Elaeis guineensis Jacq.) with Rot Disease: Phosphate-Solubilizing B. cereus vs. Oil Palm Ganoderma. Borneo Journal of Resource Science and Technology, 14(2), 108–117. https://doi.org/10.33736/bjrst.7024.2024