Effects of Salinity Changes on Hematological Blood Parameters and Stress Responses in Red Tilapia (Oreochromis spp.) Infected with Vibrio harveyi

Salinity changes in Tilapia Infected with V. harveyi

Authors

  • MOHAMMAD FAIZAL ULKHAQ Department of Health and Life Sciences, Faculty of Health, Medicine and Life Sciences, Airlangga University, Banyuwangi, 68423 East Java, Indonesia
  • KAVINA RENDA SAFITRI Aquaculture Study Program, School of Health and Natural Sciences, Airlangga University, Banyuwangi, 68423 East Java, Indonesia
  • DAIVA ILYANING ASRIN Aquaculture Study Program, School of Health and Natural Sciences, Airlangga University, Banyuwangi, 68423 East Java, Indonesia
  • SULMARTIWI LAKSMI Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya, 60115 East Java, Indonesia
  • JIUN-YAN LOH Tropical Futures Institute (TFI), James Cook University Singapore, 149 Sims Drive, 387380, Singapore

DOI:

https://doi.org/10.33736/bjrst.7163.2024

Abstract

The effect of salinity manipulation on the blood parameters and stress responses of red tilapia, Oreochromis spp. During infection with Vibrio harveyi was investigated. The fish were reared in five different salinities (0, 5, 10, 15, and 20 ppt) with three replicates for 30 days and were injected with 106 CFU/mL V. harveyi intramuscularly in all treatments except the negative control. After infection, the fish were observed for clinical signs for 14 days, collected blood samples, and measured stress responses in 0, 2, 3, 4, 5, 6, 7, and 14-days post-infection (dpi) with V. harveyi, meanwhile the cortisol plasma was taken on 0, 2, 3, 4, 5, and 6-dpi. The analysis of blood parameters consisted of total erythrocyte count (RBCs), total leucocyte count (WBCs), hemoglobin (Hb) level, percentage of monocytes (Mon), lymphocytes (Lym) and neutrophils (Neu). The stress response parameters included primary responses (cortisol plasma), secondary responses (blood glucose), and tertiary responses (ventilation rate). The results indicate that salinity manipulation influenced the resistance of red tilapia after infection with V. harveyi.

References

Abdel-Tawwab, M. Khalifa, E.D, Amany M.K., Mohamed A.A., Nashwa K. & Riad H. (2020). Dietary garlic and chitosan alleviated zearalenone toxic effects on performance, immunity, and challenge of European sea bass, Dicentrarchus labrax, to Vibrio alginolyticus infection. Aquaculture International, 28(2): 493–510. DOI: 10.1007/s10499-019-00477-0.

Amar, E.C., Apines-Amar, M.J.S. & Faisan, J.P. (2018). Dietary Onion or Ginger Modulates the Stress Response and Susceptibility to Vibrio harveyi JML1 Infection in Brown-marbled Grouper Epinephelus fuscoguttatus Juveniles. Journal of Aquatic Animal Health, 30(1): 39–49. DOI: 10.1002/aah.10005.

Atujona, D., Cai, S. & Amenyogbe, E. (2018). Mini review on Vibrio Infection-A Case Study on Vibrio harveyi Clade. Fisheries and Aquaculture Journal, 9(4): 9–12. DOI: 10.4172/2150-3508.1000258.

Austin, B. & Zhang, X.H. (2006). Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43(2): 119–124. DOI: 10.1111/j.1472-765X.2006.01989.x.

Azzam-Sayuti, M., Ina-Salwany, M., Zamri-Saad, M., Salleh A., Yusuf, M.T., Monir, Md.S., Aslah, M., Muhamad-Sofie, M.H.N., Lee, J.Y., Chin, Y.K., Amir-Danial, Z., Asyiqin, A., Lukman, B., Liles, M.R., & Amal, M.N.A. (2021). Comparative pathogenicity of Aeromonas spp. In cultured red hybrid tilapia (Oreochromis niloticus × O. mossambicus). Biology, 10(11): 1–14. DOI: 10.3390/biology10111192.

Balasch, J.C. & Tort, L. (2019). Netting the stress responses in fish. Frontiers in Endocrinology, 10(FEB): 1–12. DOI: 10.3389/fendo.2019.00062.

Barrow, G.I. & Feltham, R.K.. (1999). Cowan and Steel’s Manual for the Identification of Medical Bacteria. Third edition. Cambridge: Cambridge University Press. pp. 95.

Barton, B.A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42(3): 517–525. DOI: 10.1093/icb/42.3.517.

Bartoňková, J., Hyršl, P. & Vojtek, L. (2016). Glucose determination in fish plasma by two different moderate methods. Acta Veterinaria Brno, 85(4): 349–353. DOI: 10.2754/avb201685040349.

Becker, P., Gillan, D., Lanterbecq, D., Jangoux, M., Rasolofonirina, R., Rakotovao, J., & Eeckhaut, I. (2004). The skin ulceration disease in cultivated juveniles of Holothuria scabra (Holothuroidea, Echinodermata). Aquaculture, 242(1–4): 13–30. DOI: 10.1016/j.aquaculture.2003.11.018.

Bonga, S.F. (1997). Degeneration and death, by apoptosis and necrosis, of the pavement and chloride cells in the gills of the teleost Oreochromis mossambicus. Cell and Tissue Research, 255: 235-243.

Birrer, S.C., Reusch, T.B.H. & Roth, O. (2012). Salinity change impairs pipefish immune defence. Fish and Shellfish Immunology, 33(6): 1238–1248. DOI: 10.1016/j.fsi.2012.08.028.

Blaxhall, P.C. & Daisley, K.W. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, 5(6): 771–781. DOI: 10.1111/j.1095-8649.1973.tb04510.x.

Brehm, T.T., Berneking, L., Rohde, H., Chistner, M., Schlickewei, C., Sena M.M., & Schmiedel, S. (2020). Wound infection with Vibrio harveyi following a traumatic leg amputation after a motorboat propeller injury in Mallorca, Spain: A case report and review of literature. BMC Infectious Diseases, 20(1): 1–7. DOI: 10.1186/s12879-020-4789-2.

Buchmann, K. (2022). Neutrophils and aquatic pathogens. Parasite Immunology, 44(6): 1–11. DOI: 10.1111/pim.12915.

Cardinaud, M., Barbou, A., Capitaine, C., Bidault, A., Dujon, A.M., Moraga, D., & Paillard, C. (2014). Vibrio harveyi adheres to and penetrates tissues of the European abalone Haliotis tuberculata within the first hours of contact. Applied and Environmental Microbiology, 80(20): 6328–6333. DOI: 10.1128/AEM.01036-14.

Chaves-Pozo, E., Muñoz, P., López-Muñoz, A., Pelegrín, P., García Ayala, A., Mulero, V., & Meseguer, J. (2005). Early innate immune response and redistribution of inflammatory cells in the bony fish gilthead seabream experimentally infected with Vibrio anguillarum. Cell and Tissue Research, 320(1): 61–68. DOI: 10.1007/s00441-004-1063-7.

Clulow, S., Gould, J., James, H., Stockwell, M., Clulow, J., & Mahony, M. (2018). Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. Journal of Applied Ecology, 55(2): 830–840. DOI: 10.1111/1365-2664.13030.

Corrêa, S.A. da S., Abessa, D.M.S., Santos, L.G. dos da S., Edison, B., & Seriani, R. (2017). Differential blood counting in fish as a non-destructive biomarker of water contamination exposure. Toxicological and Environmental Chemistry, 99(3): 482–491. DOI: 10.1080/02772248.2016.1189554.

Dangeubun, J.L. & Metungun, J. (2017). Hematology of Vibrio alginolyticus-infected humpback grouper Cromileptes altivelis, under treatment of Alstonia acuminata shoot extract. AACL Bioflux, 10(2): 274–284.

Darshanee Ruwandeepika, H.A., Sanjeewa Prasad Jayaweera, T., Paban Bhowmick, P., Karunasagar, I., Bossier, P., & Defoirdt, T. (2012). Pathogenesis, virulence factors and virulence regulation of vibrios belonging to the Harveyi clade. Reviews in Aquaculture, 4(2): 59–74. DOI: 10.1111/j.1753-5131.2012.01061.x.

Do Huu, H., Sang, H.M. & Thanh Thuy, N.T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish and Shellfish Immunology, 54: 402–410. DOI: 10.1016/j.fsi.2016.03.161.

Dominguez, M., Takemura, A. & Tsuchiya, M. (2005). Effects of changes in environmental factors on the non-specific immune response of Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 36(4): 391–397. DOI: 10.1111/j.1365-2109.2005.01220.x.

Eissa, E.S.H., Ahmed, R.A., Abd El-Aziz, Y.M., Hendam, B.M., Eissa, M.E.H., ElBanna, N.I. (2024). Impact of a varied combinatorial mixture of β-1, 3 glucan and fructooligosaccharides on growth performance, metabolism, intestinal morphometry, expression of antioxidant-related genes, immunity, and protection against Vibrio alginolyticus in Red tilapia. Aquaculture International, 32: 6575–6595. DOI: 10.1007/s10499-024-01479-3

Ellis, A.E. (1977). The leucocytes of fish: A review. Journal of Fish Biology, 11(5): 453–491. DOI: 10.1111/j.1095-8649.1977.tb04140.x.

Ellis, T., Yildiz, H.Y., López-Olmeda, J., Spedicato, M. T., Tort, L., Øverli, Ø., Martins, & C.I.M. (2012). Cortisol and finfish welfare. Fish Physiology and Biochemistry, 38(1): 163–188. DOI: 10.1007/s10695-011-9568-y.

Evans, T.G. & Kültz, D. (2020). The cellular stress response in fish exposed to salinity fluctuations. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(6): 421–435. DOI: 10.1002/jez.2350.

Fang, H., Yang, Y.Y., Wu, X.M., Zheng, S.Y., Song, Y.J., Zhang, J., & Chang, M.X. (2022). Effects and Molecular Regulation Mechanisms of Salinity Stress on the Health and Disease Resistance of Grass Carp. Frontiers in Immunology, 13(June): 1–20. DOI: 10.3389/fimmu.2022.917497.

Fatima, R., Nilofer, P.S., Karthikeyan, K., Vidya, R., Itami, T., & Sudhakaran, R. (2022). Enhancement of immune response and resistance to Vibrio parahaemolyticus in Tilapia fish (Oreochromis mossambicus) by dietary supplementation of Portieria hornemannii. Aquaculture, 547 (737448): 1-6. DOI: 10.1016/j.aquaculture.2021.737448.

Fischer, U., Utke, K., Somamoto, T., Köllner, B., Ototake, M. & Nakanishi, T. (2006). Cytotoxic activities of fish leucocytes’, Fish and Shellfish Immunology, 20(2): 209–226. DOI: 10.1016/j.fsi.2005.03.013.

Flint, N., Crossland, M.R. & Pearson, R.G. (2015). Sublethal effects of fluctuating hypoxia on juvenile tropical Australian freshwater fish. Marine and Freshwater Research, 66(4): 293–304. DOI: 10.1071/MF14120.

Galhardo, L., Vital, J. & Oliveira, R.F. (2011).The role of predictability in the stress response of a cichlid fish. Physiology and Behavior, 102(3–4): 367–372. DOI: 10.1016/j.physbeh.2010.11.035.

Grayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J.W., Xie, J., & Belosevic, M. (2018). Mechanisms of fish macrophage antimicrobial immunity. Frontiers in Immunology, 9:1-22. DOI: 10.3389/fimmu.2018.01105.

Harper, C. & Wolf, J.C. (2009). Morphologic effects of the stress response in fish. ILAR Journal, 50(4): 387–396. DOI: 10.1093/ilar.50.4.387.

Hashem, M. & El-Barbary, M. (2013). Vibrio harveyi infection in Arabian Surgeon fish (Acanthurus sohal) of red sea at hurghada, Egypt. Egyptian Journal of Aquatic Research, 39(3): 199–203. DOI: 10.1016/j.ejar.2013.10.006.

Hauton, C., Hawkins, L.E. & Hutchinson, S. (2000). The effects of salinity on the interaction between a pathogen (Listonella anguillarum) and components of a host (Ostrea edulis) immune system. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 127(2): 203–212. DOI: 10.1016/S0305-0491(00)00251-0.

Havixbeck, J.J., Rieger, A.M., Wong, M.E., Hodgkinson, J.W., & Barreda, D.R. (2016). Neutrophil contributions to the induction and regulation of the acute inflammatory response in teleost fish. Journal of Leukocyte Biology, 99(2): 241–252. DOI: 10.1189/jlb.3hi0215-064r.

Havixbeck, J.J. & Barreda, D.R. (2015). Neutrophil development, migration, and function in teleost fish. Biology, 4(4): 715–734. DOI: 10.3390/biology4040715.

Hernández-Cabanyero, C., Sanjuán, E.R.L., Felipe E., Vallejos-Vidal, E., Tort, & Lluis Amaro, C. (2022). A Transcriptomic Study Reveals That Fish Vibriosis Due to the Zoonotic Pathogen Vibrio vulnificus Is an Acute Inflammatory Disease in Which Erythrocytes May Play an Important Role. Frontiers in Microbiology, 13: 1-17. DOI: 10.3389/fmicb.2022.852677

Iwama, G.K., Takemura, A. & Takano, K. (1997). Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. Journal of Fish Biology, 51(5): 886–894. DOI: 10.1006/jfbi.1997.0495.

Jun, L. & Woo, N.Y.S. (2003). Pathogenicity of vibrios in fish: An overview. Journal of Ocean University of China, 2(2): 117–128. DOI: 10.1007/s11802-003-0039-7.

Kementerian Kelautan dan Perikanan (2022) Kelautan dan Perikanan dalam Angka, Pusat Data, Statistik dan Informasi Kementerian Kelautan dan Perikanan. Kota Jakarta: Kementerian Kelautan dan Perikanan. 83 pp.

Kim, J.H., Park, H.J., Kim, K.W., Hwang, I.K., Kim, D.H., Oh, C.W., Lee, J.S. & Kang, J.C. (2017). Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiology and Biochemistry, 43(5):1421–1431. DOI: 10.1007/s10695-017-0382-z.

Le, K.T. & Fotedar, R. (2014). Immune Responses to Vibrio anguillarum in Yellowtail Kingfish, Seriola lalandi, Fed Selenium Supplementation. Journal of the World Aquaculture Society, 45(2):138–148. DOI: 10.1111/jwas.12104.

Li, X., Yang, B., Shi, C., Wang, H., Yu, R., Li, Q. & Liu, S. (2022). Synergistic Interaction of Low Salinity Stress With Vibrio Infection Causes Mass Mortalities in the Oyster by Inducing Host Microflora Imbalance and Immune Dysregulation. Frontiers in Immunology, 13(May):1–13. DOI: 10.3389/fimmu.2022.859975.

Lu, J.F., Luo, S., Jin, T.C., Wang, L.C., Yang, G.J., Lu, X.J. & Chen, J. (2021). Betaine protects ayu (Plecoglossus altivelis) against Vibrio anguillarum infection in salinity by regulating the immunomodulatory activity of monocytes/macrophages. Aquaculture, 536: 1-8. DOI: 10.1016/j.aquaculture.2021.736482

Lu, M. Su, M., Liu, N. & Zhang, J. (2022). Effects of environmental salinity on the immune response of the coastal fish Scatophagus argus during bacterial infection’, Fish and Shellfish Immunology, 124(January): 401–410. DOI: 10.1016/j.fsi.2022.04.029.

Lu, X.J. & Chen, J. (2019). Specific function and modulation of teleost monocytes/ macrophages: polarization and phagocytosis. Zoological research, 40(3): 146–150. DOI: 10.24272/j.issn.2095-8137.2019.035.

Mangunwardoyo, W., Ismayasari, R. & Riani, E. (2016). Uji Patogenisitas dan Virulensi Aeromonas hydrophila Stanier pada Ikan Nila (Oreochromis niloticus Lin.) melalui Postulat Koch. Jurnal Riset Akuakultur, 5(2): 245-255. DOI: 10.15578/jra.5.2.2010.145-255.

Mauel, M.J., Miller, D.L. & Merrill, A.L. (2007). Hematologic and plasma biochemical values of healthy hybrid tilapia (Oreochromis aureus × Oreochromis nilotica) maintained in a recirculating system. Journal of Zoo and Wildlife Medicine, 38(3): 420–424. DOI: 10.1638/06-025.1.

Montánchez, I. & Kaberdin, V.R. (2020). Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. Marine Environmental Research, 154:1-15. DOI: 10.1016/j.marenvres.2019.104850.

Mortaz, E., Alipoor, S.D., Adcock, I.M., Mumby, S. & Koenderman, L. (2018). Update on neutrophil function in severe inflammation. Frontiers in Immunology, 9(OCT): 1–14. DOI: 10.3389/fimmu.2018.02171.

Nourshargh, S. & Alon, R. (2014). Leukocyte Migration into Inflamed Tissues. Immunity, 41(5): 694–707. DOI: 10.1016/j.immuni.2014.10.008.

Nurhafizah, W.W.I., Lee, K.L., Laith A.A.R., Nadirah, M. Danish-Daniel, M., Zainathan, S.C. & Najiah, M. (2021). Virulence properties and pathogenicity of multidrug-resistant Vibrio harveyi associated with luminescent vibriosis in Pacific white shrimp, Penaeus vannamei. Journal of Invertebrate Pathology, 186: 1-12. DOI: 10.1016/j.jip.2021.107594.

Odhiambo, E., Angienda, P.O., Okoth, P., & Onyango, D. (2020). Stocking Density Induced Stress on Plasma Cortisol and Whole Blood Glucose Concentration in Nile Tilapia Fish (Oreochromis niloticus) of Lake Victoria, Kenya. International Journal of Zoology, 2020: 1-8. DOI: 10.1155/2020/9395268.

Palang, I., Withyachumnarnkul, B., Senapin, S., Sirimanapong, W., & Vanichviriyakit, R. (2020). Brain histopathology in red tilapia Oreochromis sp. experimentally infected with Streptococcus agalactiae serotype III. Microscopy Research and Technique, 83(8): 877–888. DOI: 10.1002/jemt.23481.

Pattah, H., Wahjuningrum, D., Yuhana, M., & Widanarni W. (2020). Control of Vibrio alginolyticus infection in Asian sea bass Lates calcarifer using ambon banana plant powder Musa paradisiacal through the feed. Indonesian Aquaculture Journal, 15(2): 85–91. DOI: 10.15578/IAJ.15.2.2020.85-91.

Peter, M.C.S. (2011). The role of thyroid hormones in stress response of fish. General and Comparative Endocrinology, 172(2): 198–210. DOI: 10.1016/j.ygcen.2011.02.023.

Petitjean, Q., Jean, S., Gandar, A., Côte, J., Laffaille, P., & Jacquin, L. (2019). Stress responses in fish: From molecular to evolutionary processes. Science of the Total Environment, 684: 371–380. DOI: 10.1016/j.scitotenv.2019.05.357.

Qiao, G., Park, S. Il & Xu, D.H. (2012). Clinical, hematological, and biochemical alterations in olive flounder Paralichthys olivaceus following experimental infection by Vibrio scophthalmi. Fisheries and Aquatic Sciences, 15(3): 233–239. DOI: 10.5657/FAS.2012.0233.

Renitasari, D.P., Kurniawan, A. & Kurniaji, A. (2021). Blood glucose of tilapia fish Oreochromis mossambica as a water bioindicator in the downstream of Brantas waters, East Java. AACL Bioflux, 14(4): 2040–2049.

Ruiz, P., Balado, M., Toranzo, A.E., Poblete-Morales, M., Lemos, M.L., & Avendaño-Herrera, R. (2016). Iron assimilation and siderophore production by Vibrio ordalii strains isolated from diseased Atlantic salmon Salmo salar in Chile. Diseases of Aquatic Organisms, 118(3): 217–226. DOI: 10.3354/dao02976.

Sadoul, B. & Geffroy, B. (2019). Measuring cortisol, the major stress hormone in fishes. Journal of Fish Biology, 94(4): 540–555. DOI: 10.1111/jfb.13904.

Scapigliati, G. (2013). Functional aspects of fish lymphocytes. Developmental and Comparative Immunology, 41(2): 200–208. DOI: 10.1016/j.dci.2013.05.012.

Scapigliati, G., Fausto, A.M. and Picchietti, S., 2018. Fish lymphocytes: an evolutionary equivalent of mammalian innate-like lymphocytes?. Frontiers in immunology, 9:1-8. DOI: 10.3389/fimmu.2018.00971.

Shahjahan, M., Islam, Md.J., Hossain, Md.T., Mishu, M.A., Hasan, J. & Brown, C. (2022). Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of The Total Environment, 843(June): 156910. DOI: 10.1016/j.scitotenv.2022.156910.

Shen, Y., Wang, D., Zhao, J., & Chen, X. (2018). Fish red blood cells express immune genes and responses. Aquaculture and Fisheries, 3(1): 14–21. DOI: 10.1016/j.aaf.2018.01.001.

Siddik, M.A.B., Howieson, J. & Fotedar, R. (2019). Beneficial effects of tuna hydrolysate in poultry by-product meal diets on growth, immune response, intestinal health and disease resistance to Vibrio harveyi in juvenile barramundi, Lates calcarifer. Fish and Shellfish Immunology, 89(November 2018): 61–70. DOI: 10.1016/j.fsi.2019.03.042.

Silviana, N.R., Pamungkas, W. and Grandiosa, R., 2022. Utilizing of black cumin (Nigella sativa) flour to increase the immunity system of tilapia (Oreochromis niloticus) against Aeromonas hydrophila bacteria attack. Jurnal Akuakultur Indonesia, 21(2):161-177. DOI: 10.19027/jai.21.2.161-177.

Speirs, Z.C., Loynes, C.A., Mathiessen, H., Elks, P.M., Renshaw, S.A. & Jørgensen, L.G. (2024). What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. Fish and Shellfish Immunology, 148:1-16 DOI: 10.1016/j.fsi.2024.109490.

Talpur, A.D., Ikhwanuddin, M. & Ambok Bolong, A.M. (2013) ‘Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture, 400–401: 46–52. DOI: 10.1016/j.aquaculture.2013.02.043.

Vadhel, N.P., Ng, A., Pathan, J., Tandel, J.T., Lende, S., & Shrivastava, V. (2017). Red Tilapia: A Candidate Euryhaline Species for Aqua Farming in Gujarat. Journal of FisheriesSciences.com, 11(1): 48–50. DOI: 10.21767/1307-234x.1000107.

van Muiswinkel, W.B. (1993). Fish immunology. Veterinary Immunology and Immunopathology, 35(SUPPL. 1): 169–175. DOI: 10.1016/0165-2427(93)90147-v.

Vargas, R., Balasch, J.C., Brandts, I., Reyes-López, F., Tort, L., & Teles, M. (2018). Variations in the immune and metabolic response of proactive and reactive Sparus aurata under stimulation with Vibrio anguillarum vaccine’, Scientific Reports, 8(1): 1–9. DOI: 10.1038/s41598-018-35863-w.

Vo, V.-T., Tran, T., Nguyen, T., Truong, V., Pham, C., Pham, T. & Thuong, H.N.T. (2022). Hematological Parameters of Red Tilapia (Oreochromis sp.) Fed Essential Oils of Mentha piperita after Challenge with Streptococcus agalactiae. Pakistan Journal of Zoology, (May): 1–8. DOI: 10.17582/journal.pjz/20211106031127.

Wen, X., Chu, P., Xu, J., Wei, X., Fu, D., Wang, T. &Yin, S. (2021). Combined effects of low temperature and salinity on the immune response, antioxidant capacity and lipid metabolism in the pufferfish (Takifugu fasciatus). Aquaculture, 531: 1-10. DOI: 10.1016/j.aquaculture.2020.735866.

Wicher, K.B. & Fries, E. (2006). Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken. Proceedings of the National Academy of Sciences of the United States of America, 103(11): 4168–4173. DOI: 10.1073/pnas.0508723103.

Wiik, R., Andersen, K., Uglenes, I., & Egidius, E. (1989). Cortisol-induced increase in susceptibility of Atlantic salmon, Salmo salar, to Vibrio salmonicida, together with effects on the blood cell pattern. Aquaculture, 83(3–4): 201–215. DOI: 10.1016/0044-8486(89)90033-1.

Witeska, M. (2015). Anemia of Teleost Fish. Bulletin of the European Association of Fish Pathologists, 35(4):148–160.

Witeska, M., Kondera, E., Ługowska, K., Bojarski, B. (2022). Hematological methods in fish – Not only for beginners. Aquaculture, 547: 1–17. DOI: 10.1016/j.aquaculture.2021.737498.

Xiao, Z., Li, X., Xue, M., Zhang, M., Liu, W., Fan, Y., Chen, X., Chu, Z., Gong, F., Zeng, L., & Zhou, Y. (2022). Vibrio metschnikovii, a Potential Pathogen in Freshwater-Cultured Hybrid Sturgeon’, Animals, 12(9): 1–14. DOI: 10.3390/ani12091101.

Xie, J., Bu, L., Jin, S., Wang, X., Zhao, Q., Zhou, S., & Xu, Y. (2020). Outbreak of vibriosis caused by Vibrio harveyi and Vibrio alginolyticus in farmed seahorse Hippocampus kuda in China. Aquaculture, 523: 1-9. DOI: 10.1016/j.aquaculture.2020.735168.

Yada, T., Hirano, T. & Grau, E.G. (1994). Changes in Plasma Levels of the Two Prolactins and Growth Hormone during Adaptation to Different Salinities in the Euryhaline Tilapia, Oreochromis niloticus. General and Comparative Endocrinology, 93: 214–223. DOI: 10.1006/gcen.1994.1025

Yanuhar, U., Nurcahyo, H., Widiyanti, L., Junirahma, N.S. Caesar, N.R., & Sukoso, S. (2022). In vivo test of Vibrio alginolyticus and Vibrio harveyi infection in the humpback grouper (Cromileptes altivelis) from East Java Indonesia. Veterinary World, 15: 1269–1282. DOI: 10.14202/vetworld.2022.1269-1282.

Yuhana, S., Suprapto, H., Soegianto, A., Dalahi, F., Mahardika, K., Zafran, Z., & Mastuti, I. (2019). The hematological response of cantang hybrid grouper (Epinephelus fuscoguttatus x Epinephelus lanceolatus) injected with extracellular product, intracellular component and whole cell vaccine of Vibrio alginolyticus. AACL Bioflux, 12(6): 2273–2285.

Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-De Frías, C., & Cortés, A. (2006). Ontogeny of the immune system of fish. Fish and Shellfish Immunology, 20(2), pp. 126–136. DOI: 10.1016/j.fsi.2004.09.005.

Zhang, X.H., He, X. & Austin, B. (2020). Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Marine Life Science and Technology, 2(3): 231–245. DOI: 10.1007/s42995-020-00037-z.

Zhao, M.L., Chi, H. & Sun, L. (2017). Neutrophil extracellular traps of Cynoglossus semilaevis: Production characteristics and antibacterial effect. Frontiers in Immunology, 8(MAR): 1–9. DOI: 10.3389/fimmu.2017.00290.

Downloads

Published

2024-12-23

How to Cite

ULKHAQ, M. F., SAFITRI, K. R., ASRIN, D. I., LAKSMI , S., & LOH, J.-Y. (2024). Effects of Salinity Changes on Hematological Blood Parameters and Stress Responses in Red Tilapia (Oreochromis spp.) Infected with Vibrio harveyi: Salinity changes in Tilapia Infected with V. harveyi. Borneo Journal of Resource Science and Technology, 14(2), 54–67. https://doi.org/10.33736/bjrst.7163.2024