Red Seaweed Carrageenan: A Comprehensive Review of Preparation in Cosmetics - An In Depth Analysis

Red Seaweed Carrageenan for Cosmetics

Authors

  • NAZIRAH MINGU Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • NUR HASLINDA ABDUL MAIL Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • HASMADI MAMAT Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • MD SHAFIQUZZAMAN SIDDIQUEE Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • MOHD HAFIZ ABD MAJID Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • MOHD SANI SARJADI Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.33736/bjrst.7290.2024

Abstract

Carrageenan, an extract from red seaweed (Rhodophyta), has many uses in cosmetics, and this literature review delves into them all. Due to its superior gelling, thickening, and stabilizing properties, carrageenan, a polysaccharide with a wide range of chemical structures, has been utilized in various industries throughout history. In recent years, the cosmetics industry has shown growing interest in harnessing the potential of carrageenan, driven by the increasing demand for natural and sustainable ingredients. This review provides a comprehensive examination of the botanical background, types of carrageenan, and the most effective extraction methods for obtaining the key bioactive compounds that enhance its functionality in cosmetic formulations. The functional properties of carrageenan in cosmetics are discussed in depth, including its gelling and thickening capabilities, moisturizing effects, and stability enhancement. Additionally, its biological activities, such as antioxidant and anti-inflammatory properties, contribute to its appeal as a valuable ingredient in skincare products. Formulation considerations, including compatibility with a wide range of cosmetic ingredients and optimal concentrations, are explored to facilitate the development of effective products. The review also addresses the incorporation of carrageenan into cosmetic formulations, along with safety and regulatory aspects, ensuring a comprehensive understanding of the product's conformity with industry standards. In conclusion, the review provides an overview of current challenges, potential future research directions, and case studies showcasing the incorporation of carrageenan into cosmetic products. This review aims to serve as a valuable resource for researchers, formulators, and industry professionals interested in the innovative use of carrageenan in the evolving landscape of cosmetic science by synthesizing existing knowledge and identifying gaps in the current scientific literature.

References

Al-Nahdi, Z.M., Al-Alawi, A., & Al-Marhobi, I. (2019). The effect of extraction conditions on chemical and thermal characteristics of kappa‐carrageenan extracted from Hypnea bryoides. Journal of Marine Sciences, 1: 5183261. 1-10 DOI:10.1155/2019/5183261

Bagal‐Kestwal, D.R., Pan, M.H., & Chiang, B.H. (2019). Properties and applications of gelatin, pectin, and carrageenan gels. Bio monomers for green polymeric composite materials, 117-140. DOI:10.1002/9781119301714.ch6

Batista, M.P., Gonçalves, V.S., Gaspar, F.B., Nogueira, I.D., Matias, A.A., & Gurikov, P. (2020). Novel alginate-chitosan aerogel fibres for potential wound healing applications. International Journal of Biological Macromolecules, 156: 773-782. DOI:10.1016/j.ijbiomac.2020.04.089

Bauer, S., Jin, W., Zhang, F., & Linhardt, R.J. (2021). The application of seaweed polysaccharides and their derived products with potential for the treatment of Alzheimer’s disease. Marine drugs, 19(2): 89. DOI:10.3390/md19020089

Bukhari, N.T.M., Rawi, N.F.M., Hassan, N.A.A., Saharudin, N.I., & Kassim, M.H.M. (2023). Seaweed polysaccharide nanocomposite films: A review. International Journal of Biological Macromolecules, 245: 125486. 1-13. DOI:10.1016/j.ijbiomac.2023.125486

Chauhan, P.S., & Saxena, A. (2016). Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech, 6(2): 146. 1-18. DOI:10.1007/s13205-016-0461-3

El-Beltagi, H.S., Mohamed, A.A., Mohamed, H.I., Ramadan, K.M., Barqawi, A.A., & Mansour, A.T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine drugs, 20(6): 342. 1-49. DOI:10.3390/md20060342

El-Said, G.F., & El-Sikaily, A. (2013). Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environmental Monitoring and assessment, 185, 6089-6099. DOI:10.1007/s10661-012-3009-y

Entezari, T., Zarei, M., Jamekhorshid, A., Mohammadizadeh, M.R., & Entezam, M. (2022). Purification and characterization of carrageenan extracted from persian gulf laurencia snyderiae red algae. Applied Food Biotechnology, 9(3): 239-249. DOI:10.22037/afb.v9i3.37367

Ferdiansyah, R., Abdassah, M., Zainuddin, A., Rachmaniar, R., & Chaerunisaa, A.Y. (2023). Effects of alkaline solvent type and pH on solid physical properties of carrageenan from Eucheuma cottonii. Gels, 9(5): 397. 1-14. DOI:10.3390/gels9050397

Ferreira, M., Matos, A., Couras, A., Marto, J., & Ribeiro, H. (2022). Overview of cosmetic regulatory frameworks around the world. Cosmetics, 9(4): 72. 1-15. DOI:10.3390/cosmetics9040072

Firdayanti, L., Yanti, R., Rahayu, E.S., & Hidayat, C. (2023). Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method. Algal Research, 69: 102906.

Fransiska, D., Darmawan, M., Sinurat, E., Sedayu, B.B., Wardhana, Y.W., Herdiana, Y., & Setiana, G.P. (2021). Characteristics of oil in water (o/w) type lotions incorporated with kappa/iota carrageenan. IOP Conference Series: Earth and Environmental Science, 715, (1): 012050).

Gerber, P., Dutcher, J.D., Adams, E.V., & Sherman, J.H. (1958). Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proceedings of the Society for Experimental Biology and Medicine, 99(3): 590-593.

Hamasuna, R., Eizuru, Y., & Minamishima, Y. (1994). Inhibition by iota-carrageenan of the spread of murine cytomegalovirus from the peritoneal cavity to the blood plasma. Journal of General Virology, 75(1): 111-116. DOI:10.1099/0022-1317-75-1-111

Hamzalıoğlu, A., & Gökmen, V. (2024). Interaction between bioactive carbonyl compounds and asparagine and impact on acrylamide. Acrylamide in Food, Academic Press. 433-455.

He, D., Zhao, A.S., Su, H., Zhang, Y., Wang, Y.N., Luo, D., Li, J.A.& Yang, P. (2019). An injectable scaffold based on temperature‐responsive hydrogel and factor‐loaded nanoparticles for application in vascularization in tissue engineering. Journal of Biomedical Materials Research Part A, 107(10): 2123-2134. DOI:10.1002/jbm.a.36723

Hong, D.D., Hien, H.M., & Son, P.N. (2007). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology, 19: 817-826.

Huang, Z., Bi, R., Musil, S., Pétursdóttir, Á. H., Luo, B., Zhao, P., Tan., X. & Jia, Y. (2022). Arsenic species and their health risks in edible seaweeds collected along the Chinese coastline. Science of the Total Environment, 847: 157429. 1-12.

Ismail, M.M., & Amer, M.S. (2021). Characterization and biological properties of sulfated polysaccharides of Corallina officinalis and Pterocladia capillacea. Acta Botanica Brasilica, 34: 623-632.

Janowicz, M., Galus, S., Ciurzyńska, A., & Nowacka, M. (2023). The potential of edible films, sheets, and coatings based on fruits and vegetables in the context of sustainable food packaging development. Polymers, 15(21): 4231.

Jia, X., Yang, J., Wang, Z., Liu, R., & Xie, R. (2014). Polysaccharides from Laminaria japonica show hypoglycemic and hypolipidemic activities in mice with experimentally induced diabetes. Experimental Biology and Medicine, 239(12): 1663-1670.

Jiménez-Escrig, A., & Sánchez-Muniz, F. J. (2000). Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20(4): 585-598.

Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2011). Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. Advances in Food and Nutrition Research, 64: 325-337.

Jing, X., Sun, Y., Liu, Y., Ma, X., & Hu, H. (2021). Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomaterials Science, 9(16): 5533-5541. DOI:10.1039/D1BM00911G

Jönsson, M., Maubert, E., Merkel, A., Fredriksson, C., Karlsson, E. N., & Wendin, K. (2024). A sense of seaweed: Consumer liking of bread and spreads with the addition of four different species of northern European seaweeds. A pilot study among Swedish consumers. Future Foods, 9: 100292.

Ju, J., Yang, J., Zhang, W., Wei, Y., Yuan, H., & Tan, Y. (2023). Seaweed polysaccharide fibers: Solution properties, processing and applications. Journal of Materials Science & Technology, 140: 1-18.

Kalasariya, H. S., Yadav, V. K., Yadav, K. K., Tirth, V., Algahtani, A., Islam, S., & Jeon, B. H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules, 26(17): 5313.

Kanlayavattanakul, M., & Lourith, N. (2015). Biopolysaccharides for skin hydrating cosmetics. Polysaccharides: Bioactivity and Biotechnology; Springer International Publishing: New York, NY, USA, 1867-1892.

Kaur, M., Kala, S., Parida, A., & Bast, F. (2023). Concise review of green algal genus Monostroma Thuret. Journal of Applied Phycology, 35(1): 1-10.

Khalil, H. P. S. A., Tye, Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., Nurul Fazita, M. R., Mohd Hafiidz, J., Banerjee, A. & Syakir, M.I. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters, 11(4): 244-265.

Khoobbakht, F., Khorshidi, S., Bahmanyar, F., Hosseini, S.M., Aminikhah, N., Farhoodi, M., & Mirmoghtadaie, L. (2024). Modification of mechanical, rheological and structural properties of agar hydrogel using xanthan and locust bean gum. Food Hydrocolloids, 147: 109411. DOI:10.1016/j.foodhyd.2023.109411

Kumari, P., Kumar, M., Gupta, V., Reddy, C. R. K., & Jha, B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry, 120(3): 749-757. DOI:10.1016/j.foodchem.2009.11.006

Lee, K.Y., & Mooney, D.J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1): 106-126.

Lim, C., Yusoff, S., Ng, C.G., Lim, P.E., & Ching, Y.C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5): 105895.

Liu, F., Duan, G., & Yang, H. (2023). Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. International Journal of Biological Macromolecules, 235: 123787.

Liu, Y., An, D., Xiao, Q., Chen, F., Zhang, Y., Weng, H., & Xiao, A. (2022). A novel κ-carrageenan extracting process with calcium hydroxide and carbon dioxide. Food Hydrocolloids, 127: 107507.

López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., Balboa, E. M., Falque, E. & Domínguez, H. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Marine Drugs, 19(10): 552. 1-30. DOI:10.3390/md19100552

Loukelis, K., Papadogianni, D., & Chatzinikolaidou, M. (2022). Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. International Journal of Biological Macromolecules, 209: 1720-1730.

McKim, J.M., Willoughby Sr, J.A., Blakemore, W.R., & Weiner, M.L. (2019). Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Critical Reviews in Food Science and Nutrition, 59(19): 3054-3073.

Míšková, Z., Salek, R. N., Křenková, B., Kůrová, V., Němečková, I., Pachlová, V., & Buňka, F. (2021). The effect of κ-and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT, 145: 111539.

Montaser, A.S., Jlassi, K., Ramadan, M.A., Sleem, A.A., & Attia, M.F. (2021). Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats. International Journal of Biological Macromolecules, 173: 203-210.

Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds compounds: an ecosustainable source of cosmetic ingredients. Cosmetics, 8(1): 8.

Mostafavi, F.S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications-A review. International Journal of Biological Macromolecules, 159: 1165-1176.

Ningrum, A.M., & Chasani, A.R. (2021). Numerical phenetic and phylogenetic relationships in silico among brown seaweeds (Phaeophyceae) from Gunungkidul, Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 22(6): 3057-3064

Núñez-Santiago, M.D.C., Tecante, A., Garnier, C., & Doublier, J.L. (2011). Rheology and microstructure of κ-carrageenan under different conformations induced by several concentrations of potassium ion. Food Hydrocolloids, 25(1): 32-41.

Obafemi, C.A., Adegbite, O.B., Fadare, O.A., Iwalewa, E.O., Omisore, N.O., Sanusi, K., Ylmaz, Y. & Ceylan, Ü. (2021). Tryptanthrin from microwave-assisted reduction of isatin using solid-state-supported sodium borohydride: DFT calculations, molecular docking and evaluation of its analgesic and anti-inflammatory activity. Heliyon, 7(1): 1-13.

Otero, P., Carpena, M., Garcia-Oliveira, P., Echave, J., Soria-Lopez, A., García-Pérez, P., Fraga-Corral, M., Cao, H., Nie, S., Xiao, J., Simal-Gandara, J. & Prieto, M. A. (2021). Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition, 63(13): 1901-1929. DOI:10.1080/10408398.2021.1969534

Pacheco-Quito, E.M., Ruiz-Caro, R., & Veiga, M.D. (2020). Carrageenan: drug delivery systems and other biomedical applications. Marine Drugs, 18(11): 583.

Pangestuti, R., Shin, K.H., & Kim, S.K. (2021). Anti-photoaging and potential skin health benefits of seaweeds. Marine Drugs, 19(3): 172.

Peñalver, R., Lorenzo, J.M., Ros, G., Amarowicz, R., Pateiro, M., & Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6): 301.

Pessarrodona, A., Assis, J., Filbee-Dexter, K., Burrows, M.T., Gattuso, J.P., Duarte, C.M., Krause-Jensen, D., Moore, P. J., Smale, D.A. & Wernberg, T. (2022). Global seaweed productivity. Science Advances, 8(37): eabn2465.1-10. DOI:10.1126/sciadv.abn2465

Petikirige, J., Karim, A., & Millar, G. (2022). Effect of drying techniques on quality and sensory properties of tropical fruits. International Journal of Food Science & Technology, 57(11): 6963-6979.

Pimentel, F.B., Alves, R.C., Rodrigues, F., & PP Oliveira, M.B. (2017). Macroalgae-derived ingredients for cosmetic industry - An update. Cosmetics, 5(1): 2.

Pinheiro, J.L.S., Rodrigues, L.H.M., da Silva, L.D., dos Santos, V.M.R., Gomes, D.A., da Silva Chagas, F. D., Venes, J. & Damasceno, R. O. S. (2023). Sulfated iota-carrageenan from marine alga Agardhiella ramosissima prevents gastric injury in rodents via its antioxidant properties. Algal Research, 77: 103371. 1-12 DOI:10.1016/j.algal.2023.103371

Prajaputra, V., Isnaini, N., Maryam, S., Ernawati, E., Deliana, F., Haridhi, H.A., Fadli, N., Karina, S., Agustina, S., Nurfadillah, N., Arisa, I.I., Desiyana, L.S. & Bakri, T.K. (2024). Exploring marine collagen: Sustainable sourcing, extraction methods, and cosmetic applications. South African Journal of Chemical Engineering, 47(1): 197-211. DOI: 10.1016/j.sajce.2023.11.006

Priyadarshi, R., Purohit, S.D., Roy, S., Ghosh, T., Rhim, J.W., & Han, S.S. (2022). Antiviral biodegradable food packaging and edible coating materials in the COVID-19 era: A mini-review. Coatings, 12(5): 577.

Qiao, D., Zhang, Y., Lin, L., Li, K., Zhu, F., Wang, G., Xi, G., Jiang, F., Zhang, B. & Xie, F. (2023). Revealing the role of λ-carrageenan on the enhancement of gel-related properties of acid-induced soy protein isolate/λ-carrageenan system. Food Hydrocolloids, 150: 109608. 1-8. DOI:10.1016/j.foodhyd.2023.109608

Qin, Y. (2018). Seaweed hydrocolloids as thickening, gelling, and emulsifying agents in functional food products. In Bioactive seaweeds for food applications. Academic Press. 135-152

Rioux, L.E., Beaulieu, L., & Turgeon, S.L. (2017). Seaweeds: A traditional ingredients for new gastronomic sensation. Food hydrocolloids, 68: 255-265.

Rodríguez-Bernaldo de Quirós, A., & López-Hernández, J. (2021). An overview on effects of processing on the nutritional content and bioactive compounds in seaweeds. Foods, 10(9): 2168.

Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M. & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99: 1066-1083.

Safwa, S.M., Ahmed, T., Talukder, S., Sarker, A., & Rana, M.R. (2023). Applications of non-thermal technologies in food processing Industries-A review. Journal of Agriculture and Food Research, 100917.

Salido, M., Soto, M., & Seoane, S. (2023). Seaweed: Nutritional and gastronomic perspective. A review. Algal Research, 103357.

Sanjeewa, K.K.A., Kim, E. A., Son, K.T. & Jeon, Y.J. (2016). Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. Journal of Photochemistry and Photobiology B: Biology, 162: 100-105.

Shannon, E., & Abu-Ghannam, N. (2019). Seaweeds as nutraceuticals for health and nutrition. Phycologia, 58(5): 563-577.

Shannon, E., Conlon, M., & Hayes, M. (2022). The prebiotic effect of Australian seaweeds on commensal bacteria and short chain fatty acid production in a simulated gut model. Nutrients, 14(10): 2163. DOI:10.3390/nu14102163

Shi, F., Chang, Y., Shen, J., Chen, G. & Xue, C. (2023). A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocolloids, 134: 108081.

Smyth, P.P. (2021). Iodine, seaweed, and the thyroid. European Thyroid Journal, 10(2): 101-108. DOI:10.1159/000512971

Tafuro, G., Costantini, A., Baratto, G., Francescato, S., Busata, L., & Semenzato, A. (2021). Characterization of polysaccharidic associations for cosmetic use: Rheology and texture analysis. Cosmetics, 8(3): 62.

Tarman, K., Sadi, U., Santoso, J., & Hardjito, L. (2020). Carrageenan and its enzymatic extraction. Encyclopedia of Marine Biotechnology, 1: 147-159.

Thiviya, P., Gamage, A., Gama-Arachchige, N.S., Merah, O., & Madhujith, T. (2022). Seaweeds as a source of functional proteins. Phycology, 2(2): 216-243.

Wang, Q., Zhou, C., Xia, Q., Pan, D., Du, L., He, J., Sun, Y., Geng, F. & Cao, J. (2024). pH sensitive cold-set hydrogels based on fibrinogen hydrolysates/carrageenan: Insights of rheology, coacervation, microstructure and antioxidant ability. Food Hydrocolloids, 147: 109377: DOI:10.1016/j.foodhyd.2023.109377

Wan-Loy, C., & Siew-Moi, P. (2016). Marine algae as a potential source for anti-obesity agents. Marine Drugs, 14(12): 222.

Waseem, M., Khan, M. U., Majeed, Y., Ntsefong, G. N., Kirichenko, I., Klopova, A., Trushov, P.& Lodygin, A. (2023). Seaweed-based films for sustainable food packaging: properties, incorporation of essential oils, applications, and future directions. Slovak Journal of Food Sciences/Potravinarstvo, 17(1). DOI:10.5219/1908

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A.G., Camire, M.E. & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949-982. DOI 10.1007/s10811-016-0974-5

Wijesinghe, W.A.J.P., & Jeon, Y.J. (2012). Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: A Review, Fitoterapia, 83(1): 6-12. DOI:10.1016/j.fitote.2011.10.016

Xu, J., Liao, W., Liu, Y., Guo, Y., Jiang, S., & Zhao, C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Production, Processing and Nutrition, 5(1): 18. 1-21. DOI:10.1186/s43014-023-00132-5

Yuan, H., & Song, J. (2005). Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. Journal of Applied Phycology, 17: 7-13. DOI:10.1007/s10811-005-5513-8

Zaitseva, O.O., Sergushkina, M.I., Khudyakov, A.N., Polezhaeva, T.V., & Solomina, O.N. (2022). Seaweed sulfated polysaccharides and their medicinal properties. Algal Research, 68: 102885. 1-35. DOI:10.1016/j.algal.2022.102885

Zhang, Y., Song, B., Wang, X., Zhang, W., Zhu, H., Pang, X., Wang, Y., Xie, N., Zhang, S. & Lv, J. (2023). Rheological properties and microstructure of rennet-induced casein micelle/κ-carrageenan composite gels. LWT, 178: 114562. 1-10. DOI:10.1016/j.lwt.2023.114562

Downloads

Additional Files

Published

2024-12-23

How to Cite

MINGU, N., ABDUL MAIL, N. H., MAMAT, H., SIDDIQUEE, M. S., ABD MAJID, M. H., & SARJADI, M. S. (2024). Red Seaweed Carrageenan: A Comprehensive Review of Preparation in Cosmetics - An In Depth Analysis: Red Seaweed Carrageenan for Cosmetics. Borneo Journal of Resource Science and Technology, 14(2), 156–172. https://doi.org/10.33736/bjrst.7290.2024