Red Seaweed Carrageenan: A Comprehensive Review of Preparation in Cosmetics - An In Depth Analysis
Red Seaweed Carrageenan for Cosmetics
DOI:
https://doi.org/10.33736/bjrst.7290.2024Abstract
Carrageenan, an extract from red seaweed (Rhodophyta), has many uses in cosmetics, and this literature review delves into them all. Due to its superior gelling, thickening, and stabilizing properties, carrageenan, a polysaccharide with a wide range of chemical structures, has been utilized in various industries throughout history. In recent years, the cosmetics industry has shown growing interest in harnessing the potential of carrageenan, driven by the increasing demand for natural and sustainable ingredients. This review provides a comprehensive examination of the botanical background, types of carrageenan, and the most effective extraction methods for obtaining the key bioactive compounds that enhance its functionality in cosmetic formulations. The functional properties of carrageenan in cosmetics are discussed in depth, including its gelling and thickening capabilities, moisturizing effects, and stability enhancement. Additionally, its biological activities, such as antioxidant and anti-inflammatory properties, contribute to its appeal as a valuable ingredient in skincare products. Formulation considerations, including compatibility with a wide range of cosmetic ingredients and optimal concentrations, are explored to facilitate the development of effective products. The review also addresses the incorporation of carrageenan into cosmetic formulations, along with safety and regulatory aspects, ensuring a comprehensive understanding of the product's conformity with industry standards. In conclusion, the review provides an overview of current challenges, potential future research directions, and case studies showcasing the incorporation of carrageenan into cosmetic products. This review aims to serve as a valuable resource for researchers, formulators, and industry professionals interested in the innovative use of carrageenan in the evolving landscape of cosmetic science by synthesizing existing knowledge and identifying gaps in the current scientific literature.
References
Al-Nahdi, Z.M., Al-Alawi, A., & Al-Marhobi, I. (2019). The effect of extraction conditions on chemical and thermal characteristics of kappa‐carrageenan extracted from Hypnea bryoides. Journal of Marine Sciences, 1: 5183261. 1-10 DOI:10.1155/2019/5183261
Bagal‐Kestwal, D.R., Pan, M.H., & Chiang, B.H. (2019). Properties and applications of gelatin, pectin, and carrageenan gels. Bio monomers for green polymeric composite materials, 117-140. DOI:10.1002/9781119301714.ch6
Batista, M.P., Gonçalves, V.S., Gaspar, F.B., Nogueira, I.D., Matias, A.A., & Gurikov, P. (2020). Novel alginate-chitosan aerogel fibres for potential wound healing applications. International Journal of Biological Macromolecules, 156: 773-782. DOI:10.1016/j.ijbiomac.2020.04.089
Bauer, S., Jin, W., Zhang, F., & Linhardt, R.J. (2021). The application of seaweed polysaccharides and their derived products with potential for the treatment of Alzheimer’s disease. Marine drugs, 19(2): 89. DOI:10.3390/md19020089
Bukhari, N.T.M., Rawi, N.F.M., Hassan, N.A.A., Saharudin, N.I., & Kassim, M.H.M. (2023). Seaweed polysaccharide nanocomposite films: A review. International Journal of Biological Macromolecules, 245: 125486. 1-13. DOI:10.1016/j.ijbiomac.2023.125486
Chauhan, P.S., & Saxena, A. (2016). Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech, 6(2): 146. 1-18. DOI:10.1007/s13205-016-0461-3
El-Beltagi, H.S., Mohamed, A.A., Mohamed, H.I., Ramadan, K.M., Barqawi, A.A., & Mansour, A.T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine drugs, 20(6): 342. 1-49. DOI:10.3390/md20060342
El-Said, G.F., & El-Sikaily, A. (2013). Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environmental Monitoring and assessment, 185, 6089-6099. DOI:10.1007/s10661-012-3009-y
Entezari, T., Zarei, M., Jamekhorshid, A., Mohammadizadeh, M.R., & Entezam, M. (2022). Purification and characterization of carrageenan extracted from persian gulf laurencia snyderiae red algae. Applied Food Biotechnology, 9(3): 239-249. DOI:10.22037/afb.v9i3.37367
Ferdiansyah, R., Abdassah, M., Zainuddin, A., Rachmaniar, R., & Chaerunisaa, A.Y. (2023). Effects of alkaline solvent type and pH on solid physical properties of carrageenan from Eucheuma cottonii. Gels, 9(5): 397. 1-14. DOI:10.3390/gels9050397
Ferreira, M., Matos, A., Couras, A., Marto, J., & Ribeiro, H. (2022). Overview of cosmetic regulatory frameworks around the world. Cosmetics, 9(4): 72. 1-15. DOI:10.3390/cosmetics9040072
Firdayanti, L., Yanti, R., Rahayu, E.S., & Hidayat, C. (2023). Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method. Algal Research, 69: 102906.
Fransiska, D., Darmawan, M., Sinurat, E., Sedayu, B.B., Wardhana, Y.W., Herdiana, Y., & Setiana, G.P. (2021). Characteristics of oil in water (o/w) type lotions incorporated with kappa/iota carrageenan. IOP Conference Series: Earth and Environmental Science, 715, (1): 012050).
Gerber, P., Dutcher, J.D., Adams, E.V., & Sherman, J.H. (1958). Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proceedings of the Society for Experimental Biology and Medicine, 99(3): 590-593.
Hamasuna, R., Eizuru, Y., & Minamishima, Y. (1994). Inhibition by iota-carrageenan of the spread of murine cytomegalovirus from the peritoneal cavity to the blood plasma. Journal of General Virology, 75(1): 111-116. DOI:10.1099/0022-1317-75-1-111
Hamzalıoğlu, A., & Gökmen, V. (2024). Interaction between bioactive carbonyl compounds and asparagine and impact on acrylamide. Acrylamide in Food, Academic Press. 433-455.
He, D., Zhao, A.S., Su, H., Zhang, Y., Wang, Y.N., Luo, D., Li, J.A.& Yang, P. (2019). An injectable scaffold based on temperature‐responsive hydrogel and factor‐loaded nanoparticles for application in vascularization in tissue engineering. Journal of Biomedical Materials Research Part A, 107(10): 2123-2134. DOI:10.1002/jbm.a.36723
Hong, D.D., Hien, H.M., & Son, P.N. (2007). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology, 19: 817-826.
Huang, Z., Bi, R., Musil, S., Pétursdóttir, Á. H., Luo, B., Zhao, P., Tan., X. & Jia, Y. (2022). Arsenic species and their health risks in edible seaweeds collected along the Chinese coastline. Science of the Total Environment, 847: 157429. 1-12.
Ismail, M.M., & Amer, M.S. (2021). Characterization and biological properties of sulfated polysaccharides of Corallina officinalis and Pterocladia capillacea. Acta Botanica Brasilica, 34: 623-632.
Janowicz, M., Galus, S., Ciurzyńska, A., & Nowacka, M. (2023). The potential of edible films, sheets, and coatings based on fruits and vegetables in the context of sustainable food packaging development. Polymers, 15(21): 4231.
Jia, X., Yang, J., Wang, Z., Liu, R., & Xie, R. (2014). Polysaccharides from Laminaria japonica show hypoglycemic and hypolipidemic activities in mice with experimentally induced diabetes. Experimental Biology and Medicine, 239(12): 1663-1670.
Jiménez-Escrig, A., & Sánchez-Muniz, F. J. (2000). Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20(4): 585-598.
Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2011). Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. Advances in Food and Nutrition Research, 64: 325-337.
Jing, X., Sun, Y., Liu, Y., Ma, X., & Hu, H. (2021). Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomaterials Science, 9(16): 5533-5541. DOI:10.1039/D1BM00911G
Jönsson, M., Maubert, E., Merkel, A., Fredriksson, C., Karlsson, E. N., & Wendin, K. (2024). A sense of seaweed: Consumer liking of bread and spreads with the addition of four different species of northern European seaweeds. A pilot study among Swedish consumers. Future Foods, 9: 100292.
Ju, J., Yang, J., Zhang, W., Wei, Y., Yuan, H., & Tan, Y. (2023). Seaweed polysaccharide fibers: Solution properties, processing and applications. Journal of Materials Science & Technology, 140: 1-18.
Kalasariya, H. S., Yadav, V. K., Yadav, K. K., Tirth, V., Algahtani, A., Islam, S., & Jeon, B. H. (2021). Seaweed-based molecules and their potential biological activities: An eco-sustainable cosmetics. Molecules, 26(17): 5313.
Kanlayavattanakul, M., & Lourith, N. (2015). Biopolysaccharides for skin hydrating cosmetics. Polysaccharides: Bioactivity and Biotechnology; Springer International Publishing: New York, NY, USA, 1867-1892.
Kaur, M., Kala, S., Parida, A., & Bast, F. (2023). Concise review of green algal genus Monostroma Thuret. Journal of Applied Phycology, 35(1): 1-10.
Khalil, H. P. S. A., Tye, Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., Nurul Fazita, M. R., Mohd Hafiidz, J., Banerjee, A. & Syakir, M.I. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters, 11(4): 244-265.
Khoobbakht, F., Khorshidi, S., Bahmanyar, F., Hosseini, S.M., Aminikhah, N., Farhoodi, M., & Mirmoghtadaie, L. (2024). Modification of mechanical, rheological and structural properties of agar hydrogel using xanthan and locust bean gum. Food Hydrocolloids, 147: 109411. DOI:10.1016/j.foodhyd.2023.109411
Kumari, P., Kumar, M., Gupta, V., Reddy, C. R. K., & Jha, B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry, 120(3): 749-757. DOI:10.1016/j.foodchem.2009.11.006
Lee, K.Y., & Mooney, D.J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1): 106-126.
Lim, C., Yusoff, S., Ng, C.G., Lim, P.E., & Ching, Y.C. (2021). Bioplastic made from seaweed polysaccharides with green production methods. Journal of Environmental Chemical Engineering, 9(5): 105895.
Liu, F., Duan, G., & Yang, H. (2023). Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. International Journal of Biological Macromolecules, 235: 123787.
Liu, Y., An, D., Xiao, Q., Chen, F., Zhang, Y., Weng, H., & Xiao, A. (2022). A novel κ-carrageenan extracting process with calcium hydroxide and carbon dioxide. Food Hydrocolloids, 127: 107507.
López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., Balboa, E. M., Falque, E. & Domínguez, H. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Marine Drugs, 19(10): 552. 1-30. DOI:10.3390/md19100552
Loukelis, K., Papadogianni, D., & Chatzinikolaidou, M. (2022). Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. International Journal of Biological Macromolecules, 209: 1720-1730.
McKim, J.M., Willoughby Sr, J.A., Blakemore, W.R., & Weiner, M.L. (2019). Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Critical Reviews in Food Science and Nutrition, 59(19): 3054-3073.
Míšková, Z., Salek, R. N., Křenková, B., Kůrová, V., Němečková, I., Pachlová, V., & Buňka, F. (2021). The effect of κ-and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT, 145: 111539.
Montaser, A.S., Jlassi, K., Ramadan, M.A., Sleem, A.A., & Attia, M.F. (2021). Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats. International Journal of Biological Macromolecules, 173: 203-210.
Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds compounds: an ecosustainable source of cosmetic ingredients. Cosmetics, 8(1): 8.
Mostafavi, F.S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications-A review. International Journal of Biological Macromolecules, 159: 1165-1176.
Ningrum, A.M., & Chasani, A.R. (2021). Numerical phenetic and phylogenetic relationships in silico among brown seaweeds (Phaeophyceae) from Gunungkidul, Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 22(6): 3057-3064
Núñez-Santiago, M.D.C., Tecante, A., Garnier, C., & Doublier, J.L. (2011). Rheology and microstructure of κ-carrageenan under different conformations induced by several concentrations of potassium ion. Food Hydrocolloids, 25(1): 32-41.
Obafemi, C.A., Adegbite, O.B., Fadare, O.A., Iwalewa, E.O., Omisore, N.O., Sanusi, K., Ylmaz, Y. & Ceylan, Ü. (2021). Tryptanthrin from microwave-assisted reduction of isatin using solid-state-supported sodium borohydride: DFT calculations, molecular docking and evaluation of its analgesic and anti-inflammatory activity. Heliyon, 7(1): 1-13.
Otero, P., Carpena, M., Garcia-Oliveira, P., Echave, J., Soria-Lopez, A., García-Pérez, P., Fraga-Corral, M., Cao, H., Nie, S., Xiao, J., Simal-Gandara, J. & Prieto, M. A. (2021). Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition, 63(13): 1901-1929. DOI:10.1080/10408398.2021.1969534
Pacheco-Quito, E.M., Ruiz-Caro, R., & Veiga, M.D. (2020). Carrageenan: drug delivery systems and other biomedical applications. Marine Drugs, 18(11): 583.
Pangestuti, R., Shin, K.H., & Kim, S.K. (2021). Anti-photoaging and potential skin health benefits of seaweeds. Marine Drugs, 19(3): 172.
Peñalver, R., Lorenzo, J.M., Ros, G., Amarowicz, R., Pateiro, M., & Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs, 18(6): 301.
Pessarrodona, A., Assis, J., Filbee-Dexter, K., Burrows, M.T., Gattuso, J.P., Duarte, C.M., Krause-Jensen, D., Moore, P. J., Smale, D.A. & Wernberg, T. (2022). Global seaweed productivity. Science Advances, 8(37): eabn2465.1-10. DOI:10.1126/sciadv.abn2465
Petikirige, J., Karim, A., & Millar, G. (2022). Effect of drying techniques on quality and sensory properties of tropical fruits. International Journal of Food Science & Technology, 57(11): 6963-6979.
Pimentel, F.B., Alves, R.C., Rodrigues, F., & PP Oliveira, M.B. (2017). Macroalgae-derived ingredients for cosmetic industry - An update. Cosmetics, 5(1): 2.
Pinheiro, J.L.S., Rodrigues, L.H.M., da Silva, L.D., dos Santos, V.M.R., Gomes, D.A., da Silva Chagas, F. D., Venes, J. & Damasceno, R. O. S. (2023). Sulfated iota-carrageenan from marine alga Agardhiella ramosissima prevents gastric injury in rodents via its antioxidant properties. Algal Research, 77: 103371. 1-12 DOI:10.1016/j.algal.2023.103371
Prajaputra, V., Isnaini, N., Maryam, S., Ernawati, E., Deliana, F., Haridhi, H.A., Fadli, N., Karina, S., Agustina, S., Nurfadillah, N., Arisa, I.I., Desiyana, L.S. & Bakri, T.K. (2024). Exploring marine collagen: Sustainable sourcing, extraction methods, and cosmetic applications. South African Journal of Chemical Engineering, 47(1): 197-211. DOI: 10.1016/j.sajce.2023.11.006
Priyadarshi, R., Purohit, S.D., Roy, S., Ghosh, T., Rhim, J.W., & Han, S.S. (2022). Antiviral biodegradable food packaging and edible coating materials in the COVID-19 era: A mini-review. Coatings, 12(5): 577.
Qiao, D., Zhang, Y., Lin, L., Li, K., Zhu, F., Wang, G., Xi, G., Jiang, F., Zhang, B. & Xie, F. (2023). Revealing the role of λ-carrageenan on the enhancement of gel-related properties of acid-induced soy protein isolate/λ-carrageenan system. Food Hydrocolloids, 150: 109608. 1-8. DOI:10.1016/j.foodhyd.2023.109608
Qin, Y. (2018). Seaweed hydrocolloids as thickening, gelling, and emulsifying agents in functional food products. In Bioactive seaweeds for food applications. Academic Press. 135-152
Rioux, L.E., Beaulieu, L., & Turgeon, S.L. (2017). Seaweeds: A traditional ingredients for new gastronomic sensation. Food hydrocolloids, 68: 255-265.
Rodríguez-Bernaldo de Quirós, A., & López-Hernández, J. (2021). An overview on effects of processing on the nutritional content and bioactive compounds in seaweeds. Foods, 10(9): 2168.
Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M. & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99: 1066-1083.
Safwa, S.M., Ahmed, T., Talukder, S., Sarker, A., & Rana, M.R. (2023). Applications of non-thermal technologies in food processing Industries-A review. Journal of Agriculture and Food Research, 100917.
Salido, M., Soto, M., & Seoane, S. (2023). Seaweed: Nutritional and gastronomic perspective. A review. Algal Research, 103357.
Sanjeewa, K.K.A., Kim, E. A., Son, K.T. & Jeon, Y.J. (2016). Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. Journal of Photochemistry and Photobiology B: Biology, 162: 100-105.
Shannon, E., & Abu-Ghannam, N. (2019). Seaweeds as nutraceuticals for health and nutrition. Phycologia, 58(5): 563-577.
Shannon, E., Conlon, M., & Hayes, M. (2022). The prebiotic effect of Australian seaweeds on commensal bacteria and short chain fatty acid production in a simulated gut model. Nutrients, 14(10): 2163. DOI:10.3390/nu14102163
Shi, F., Chang, Y., Shen, J., Chen, G. & Xue, C. (2023). A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocolloids, 134: 108081.
Smyth, P.P. (2021). Iodine, seaweed, and the thyroid. European Thyroid Journal, 10(2): 101-108. DOI:10.1159/000512971
Tafuro, G., Costantini, A., Baratto, G., Francescato, S., Busata, L., & Semenzato, A. (2021). Characterization of polysaccharidic associations for cosmetic use: Rheology and texture analysis. Cosmetics, 8(3): 62.
Tarman, K., Sadi, U., Santoso, J., & Hardjito, L. (2020). Carrageenan and its enzymatic extraction. Encyclopedia of Marine Biotechnology, 1: 147-159.
Thiviya, P., Gamage, A., Gama-Arachchige, N.S., Merah, O., & Madhujith, T. (2022). Seaweeds as a source of functional proteins. Phycology, 2(2): 216-243.
Wang, Q., Zhou, C., Xia, Q., Pan, D., Du, L., He, J., Sun, Y., Geng, F. & Cao, J. (2024). pH sensitive cold-set hydrogels based on fibrinogen hydrolysates/carrageenan: Insights of rheology, coacervation, microstructure and antioxidant ability. Food Hydrocolloids, 147: 109377: DOI:10.1016/j.foodhyd.2023.109377
Wan-Loy, C., & Siew-Moi, P. (2016). Marine algae as a potential source for anti-obesity agents. Marine Drugs, 14(12): 222.
Waseem, M., Khan, M. U., Majeed, Y., Ntsefong, G. N., Kirichenko, I., Klopova, A., Trushov, P.& Lodygin, A. (2023). Seaweed-based films for sustainable food packaging: properties, incorporation of essential oils, applications, and future directions. Slovak Journal of Food Sciences/Potravinarstvo, 17(1). DOI:10.5219/1908
Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A.G., Camire, M.E. & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949-982. DOI 10.1007/s10811-016-0974-5
Wijesinghe, W.A.J.P., & Jeon, Y.J. (2012). Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: A Review, Fitoterapia, 83(1): 6-12. DOI:10.1016/j.fitote.2011.10.016
Xu, J., Liao, W., Liu, Y., Guo, Y., Jiang, S., & Zhao, C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Production, Processing and Nutrition, 5(1): 18. 1-21. DOI:10.1186/s43014-023-00132-5
Yuan, H., & Song, J. (2005). Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. Journal of Applied Phycology, 17: 7-13. DOI:10.1007/s10811-005-5513-8
Zaitseva, O.O., Sergushkina, M.I., Khudyakov, A.N., Polezhaeva, T.V., & Solomina, O.N. (2022). Seaweed sulfated polysaccharides and their medicinal properties. Algal Research, 68: 102885. 1-35. DOI:10.1016/j.algal.2022.102885
Zhang, Y., Song, B., Wang, X., Zhang, W., Zhu, H., Pang, X., Wang, Y., Xie, N., Zhang, S. & Lv, J. (2023). Rheological properties and microstructure of rennet-induced casein micelle/κ-carrageenan composite gels. LWT, 178: 114562. 1-10. DOI:10.1016/j.lwt.2023.114562
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Borneo Journal of Resource Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.