Growth Performance, Digestive Enzymes Activities and Gut Microbiota of Malaysian Mahseer, Tor tambroides Fingerlings Affected by Various Probiotics Concentrations

Probiotics' Impact on Growth and Gut Microbiota in Tor tambroides

Authors

  • SING YING CHUA Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MOHAMMAD BODRUL MUNIR Faculty of Agriculture, Universiti Islam Sultan Sharif Ali, Senaut Campus, Jalan Tutong, Tutong TB1741, Negeri Brunei Darussalam
  • FATHURRAHMAN LANANAN East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
  • ROSLIANAH ASDARI Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.7477.2024

Abstract

The most valued freshwater fish in Malaysia is the Malaysian mahseer, Tor tambroides, also known as Empurau. Due to the extended growing period, innovative feeding management is required to maintain fish health. This study looked at the effect of Lacto-sacc, a feed additive and antibiotic replacement made up of Lactobacillus acidophilus, Saccharomyces cerevisiae and Enterococcus faecium, on T. tambroides fingerlings’ growth performance, digestive enzyme activities and gut microbiota. A total of 600 fingerlings, each weighing 6.53 g ± 0.17 g, were allocated into twelve 650 L tanks, with 50 fingerlings per tank. Over a period of 20 weeks, the fish were fed four different diets: 0% Lacto-sacc as control (A), 0.5% Lacto-sacc (B), 1.0% Lacto-sacc (C), and 1.25% Lacto-sacc (D), with each diet replicated in three tanks. Although statistic revealed no significant differences in growth performance among treatment group (p>0.05), but it is noteworthy that fingerlings of T. tambroides were fed a diet containing 0.5% Lacto-sacc exhibited a trend toward improved growth performance with value higher SGR, along with elevated lipase and protease activities than other groups. Fusobacteria, Proteobacteria, Bacteroidetes, Firmicutes were the top four phyla in the gut microbiota of T. tambroides, accounting for more than 95%, with Fusobacteria dominating at around 70% of the gut microbiota. Cetobacterium, ZOR0006, Brevinema, and Aeromonas were the most common genera detected. T. tambroides fed a 0.5% Lacto-sacc (B) diet had lower Fusobacteria abundance while increasing other dominating bacteria compared to other treatments. Although there is no significant difference in gut microbiota, the gut microbiota of T. tambroides fed probiotics was more consistently disturbed and diversified, indicating less species dominance. The addition of Lacto-sacc, particularly at a concentration of 0.5%, appeared to enhance growth performance and increase the activity of digestive enzymes compared to the diet without Lacto-sacc, although the results were not statistically significant.

References

Foucault, P., Gallet, A., Duval, C., Marie, B. & Duperron, S. (2022). Gut microbiota and holobiont metabolome composition of the medaka fish (Oryzias latipes) are affected by a short exposure to the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 253: 106329. DOI: 10.1016/j.aquatox.2022.106329

Gallet, A., Halary, S., Duval, C., Huet, H., Duperron, S. & Marie, B. (2023). Disruption of fish gut microbiota composition and holobiont’s metabolome during a simulated Microcystis aeruginosa (Cyanobacteria) bloom. Microbiome, 11(1): 108. DOI: 10.1186/s40168-023-01558-2

Ghosh, S., Sinha, A. & Sahu, C. (2007). Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquaculture Research, 38(5): 518-526. DOI: 10.1111/j.1365-2109.2007.01696.x

Gippert, T., Virag, G. & Nagy, I. (1992). Lacto-Sacc in rabbit nutrition. Journal of Applied Rabbit Research, 15: 1101-1101.

Hannan, M.A., Munir, M.B., Asdari, R., Islam, M.S., Lima, R.A., Islam, H.R., Rashid, M.H., & Hing, H.W.Y. (2024). Dietary lacto-sacc stimulates the immune response of gravid mud crab (Scylla olivacea). Comparative Immunology Reports, 7, 200156.

Hoseinifar, S.H., Roosta, Z., Hajimoradloo, A. & Vakili, F. (2015). The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish & Shellfish Immunology, 42(2): 533-538. DOI: 10.1016/j.fsi.2014.12.003

Hossain, M.K., Ishak, S.D., Ambok-Bolong, A.M., Noordin, N.M., Iehata, S. & Kader, M.A. (2022). Effect of intestinal autochthonous Enterococcus faecalis on the growth performance, gut morphology of Malaysian mahseer (Tor tambroides) and protection against Aeromonas hydrophila. International Aquatic Research, 14(1): 1-12.

Hosseini, M., Miandare, H.K., Hoseinifar, S.H. & Yarahmadi, P. (2016). Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio). Fish & Shellfish Immunology, 59: 149-154. DOI: 10.1016/j.fsi.2016.10.026

Iehata, S., Nosi, M.Z., Danish-Daniel, M. & Sharifah, N.E. (2021). Gut microbiome associated with cultured Malaysian mahseer Tor tambroides. Aquaculture, Aquarium, Conservation & Legislation, 14(1): 46-58.

Ige, B.A. (2013). Probiotics use in intensive fish farming. African Journal of Microbiology Research, 7(22): 2701-2711. DOI: 10.5897/AJMRx12.021

Kong, Y., Liao, Z., Ma, X., Liang, M., Xu, H., Mai, K. & Zhang, Y. (2023). Response of intestinal microbiota of tiger puffer (Takifugu rubripes) to the fish oil finishing strategy. Microorganisms, 11(1): 208. DOI: doi.org/10.3390/microorganisms11010208

Kottelat, M., Pinder, A. & Harrison, A. (2018). Tor Tambroides. Cambridge, UK: International Union for Conservation of Nature. https://www.iucnredlist.org/species/187 939/91076554

Lau, M.M.L., Lim, L.W.K., Ishak, S.D., Abol-Munafi, A.B. & Chung, H.H. (2021a). A review on the emerging asian aquaculture fish, the Malaysian Mahseer (Tor tambroides): Current status and the way forward. Proceedings of the Zoological Society, 74(2): 227-237. DOI: 10.1007/s12595-021-00368-4

Lau, M.M.L., Kho, C.J.Y., Lim, L.W.K., Sia, S.C., Chung, H.H., Lihan, S. & Apun, K. (2021b). Microbiome analysis of gut bacterial communities of healthy and diseased Malaysian mahseer (Tor tambroides). bioRxiv, 2021-12. DOI: 10.1101/2021.12.08.471852

Mahajan, P., Sahoo, J. & Panda, P. (2000). Effect of probiotic (Lacto-Sacc) feeding and seasons on the different quality characteristics of poultry meat. Indian Journal of Poultry Science, 35(3): 297-301.

Mathai, P.P., Byappanahalli, M.N., Johnson, N.S. & Sadowsky, M.J. (2021). Gut microbiota associated with different sea lamprey (Petromyzon marinus) life stages. Frontiers in Microbiology, 12: 706683. DOI: 10.3389/fmicb.2021.706683

Mohammadian, T., Nasirpour, M., Tabandeh, M.R., Heidary, A.A., Ghanei-Motlagh, R. & Hosseini, S.S. (2019). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish & Shellfish Immunology, 86: 269-279. DOI: 10.1016/j.fsi.2018.11.052

Mohapatra, S., Chakraborty, T., Prusty, A., Das, P., Paniprasad, K. & Mohanta, K. (2012). Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquaculture Nutrition, 18(1): 1-11. DOI: 10.1111/j.1365-2095.2011.00866.x

Munir, M.B., Hashim, R., Chai, Y.H., Marsh, T.L. & Nor, S.A.M. (2016). Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture, 460: 59-68. DOI: 10.1016/j.aquaculture.2016.03.041

Nikoskelainen, S., Ouwehand, A., Salminen, S. & Bylund, G. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198 (3-4): 229-236. DOI: 10.1016/S0044-8486(01)00593-2

Ofek, T., Lalzar, M., Izhaki, I. & Halpern, M. (2022). Intestine and spleen microbiota composition in healthy and diseased tilapia. Animal Microbiome, 4(1): 50. DOI: 10.1186/s42523-022-00201-z

Pooramini, M., Kamali, A., Hajimoradloo, A., Alizadeh, M. & Ghorbani, R. (2009). Effect of using yeast (Saccharomyces cerevisiae) as probiotic on growth parameters, survival and carcass quality in rainbow trout Oncorhynchus mykiss fry. International Aquatic Research, 1(1): 39.

Ray, C., Bujan, N., Tarnecki, A., Davis, A.D., Browdy, C. & Arias, C.R. (2017). Analysis of the gut microbiome of Nile tilapia Oreochromis niloticus L. fed diets supplemented with Previda® and Saponin. Journal of Fisheriessciences.com, 11(2): 36-45. DOI: 10.21767/1307-234x.1000116

Redhwan, A.I., Rao, S.N., Mohamad-Zuki, N.A., Kari, A., Kamarudin, A.S., Ismail, N., Nguang, S.I., Ha, H.C., Yong, W.S., Yong, F.H. & Komilus, C.F. (2022). Mahsheers in Malaysia: A Review of Feed for Cultured Tor tambroides and Tor tambra. Bioscience Research, 19(1): 349-359.

Risjani, Y., Mutmainnah, N., Manurung, P. & Wulan, S.N. (2021). Exopolysaccharide from Porphyridium cruentum (purpureum) is not toxic and stimulates immune response against vibriosis: The assessment using zebrafish and white shrimp Litopenaeus vannamei. Marine drugs, 19 (3): 133. DOI: 10.3390/md19030133

Siddik, M.A., Foysal, M.J., Fotedar, R., Francis, D.S. & Gupta, S.K. (2022). Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture, 546: 737346. DOI: 10.1016/j.aquaculture.2021.737346

Soltani, M., Abdy, E., Alishahi, M., Mirghaed, A.T. & Hosseini-Shekarabi, P. (2017). Growth performance, immune-physiological variables and disease resistance of common carp (Cyprinus carpio) orally subjected to different concentrations of Lactobacillus plantarum. Aquaculture International, 25: 1913-1933. DOI: 10.1007/s10499-017-0164-8

Sotirov, L., Denev, S., Tsachev, I., Lalev, M., Oblakova, M. & Porfirova, Z. (2001). Effect of different growth promoters on lysozyme and complement activity. II. Studing in turkeys. Revue de medecine veterinaire, 152(1): 67-70.

Tachibana, L., Telli, G.S., Dias, D.D.C., Goncalves, G.S., Guimaraes, M.C., Ishikawa, C.M., Cavalcante, R.B., Natori, M.M., Fernandez Alarcon, M.F. & Tapia‐Paniagua, S. (2021). Bacillus subtilis and Bacillus licheniformis in diets for Nile tilapia (Oreochromis niloticus): Effects on growth performance, gut microbiota modulation and innate immunology. Aquaculture Research, 52(4): 1630-1642. DOI: 10.1111/are.15016

Tan, C.K., Natrah, I., Suyub, I.B., Edward, M.J., Kaman, N. & Samsudin, A.A. (2019). Comparative study of gut microbiota in wild and captive Malaysian Mahseer (Tor tambroides). Microbiology Open, 8(5): e00734. DOI: 10.1002/mbo3.734

Vallejos-Vidal, E., Reyes-López, F., Teles, M. & MacKenzie, S. (2016). The response of fish to immunostimulant diets. Fish & Shellfish Immunology, 56: 34-69. DOI: 10.1016/j.fsi.2016.06.028

Van Kessel, M.A., Dutilh, B.E., Neveling, K., Kwint, M.P., Veltman, J.A., Flik, G., Jetten, M. S., Klaren, P.H. & Op den Camp, H.J. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1): 1-9. DOI: 10.1186/2191-0855-1-41

Wan Alias, F.S.L., Munir, M.B., Asdari, R., Hannan, A. & Hasan, J. (2023). Dietary lacto-sacc improved growth performance, food acceptability, body indices, and basic hematological parameters in empurau (Tor tambroides) fries reared in the aquaponics system. Journal of Applied Aquaculture, 35(4): 1131-1153. DOI: 10.1080/10454438.2022.2095239

Xie, M., Xie, Y., Li, Y., Zhou, W., Zhang, Z., Yang, Y., Olsen, R.E., Ringo, E., Ran, C. & Zhou, Z. (2022). Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish. Fish & Shellfish Immunology, 120: 56-66. DOI: 10.1016/j.fsi.2021.11.017

Xiong, J.B., Nie, L. & Chen, J. (2019). Current understanding on the roles of gut microbiota in fish disease and immunity. Zoological Research, 40(2): 70-76.

Xu, Y., Li, Y., Xue, M., Yang, T., Luo, X., Fan, Y., Meng, Y., Liu, W., Lin, G., Li, B., Zeng, L. & Zhou, Y. (2021). Effects of dietary Saccharomyces cerevisiae YFI-SC2 on the growth performance, intestinal morphology, immune parameters, intestinal microbiota, and disease resistance of Crayfish (Procambarus clarkia). Animals, 11(7): 1963. DOI: 10.3390/ani11071963

Yang, J., Lin, Y., Wei, Z., Wu, Z., Zhang, Q., Hao, J., W.S. & Li, A. (2023). Edwardsiella ictaluri almost completely occupies the gut microbiota of fish suffering from Enteric septicemia of catfish (Esc). Fishes, 8(1): 30. DOI: 10.3390/fishes8010030

Zhang, Y., Wen, B., Meng, L.J., Gao, J.Z. & Chen, Z.Z. (2021). Dynamic changes of gut microbiota of discus fish (Symphysodon haraldi) at different feeding stages. Aquaculture, 531: 735912. DOI: 10.1016/j.aquaculture.2020.735912

Zomorni, M.S., Hai, C.T., Redhwan, A.I. & Komilus, C.F. (2022). Efficacy of black soldier fly (Hermetia illucens) larvae meal as feed on growth performance for juvenile Javan Mahseer (Tor tambra). Journal of Agrobiotechnology, 13(1): 118-130. DOI: 10.37231/jab.2022.13.1s.321

Downloads

Published

2024-12-23

How to Cite

CHUA, S. Y., MUNIR, M. B., LANANAN, F., & ASDARI, R. (2024). Growth Performance, Digestive Enzymes Activities and Gut Microbiota of Malaysian Mahseer, Tor tambroides Fingerlings Affected by Various Probiotics Concentrations: Probiotics’ Impact on Growth and Gut Microbiota in Tor tambroides. Borneo Journal of Resource Science and Technology, 14(2), 68–80. https://doi.org/10.33736/bjrst.7477.2024